【春节学AI炒股】深度学习引入信号处理技术,轻松分析股票等各种序列数据

简介: 把深度学习的最新方法用来做股价预测可不可行?一个探讨路径之一是如何深入把经典的信号处理技术引入到深度学习技术中,用来分析各种序列数据(sequence data),比如股票价格、金融信号等,乃至更为一般的物理、经济、社会等活动的动态信号,抽象出有价值的模式,进而对其进行预测和分析。

傅立叶变换能用来炒股发财?

事实上,几年前就有公司或者基金把深度学习的最新方法用来做股价预测,用来在股市上一搏了。

比如就有国内的研究人员用LSTM这种递归神经网络来预测风云莫测的中国股市 。

一些朋友也在私下里告诉过笔者,某美国的交易机构就用LSTM来做自动化高频交易,在大规模资金的帮助下,实现了日进斗金;当然,实际使用时要克服很多工程问题,比如要选取合适的输入信号、实现和交易所的高速事实通讯等。这些都不在本文探讨之类。

所以,想读完本文就可以成为亿万富翁的朋友可以散了:)

我们这里用炒股做个引子,真正想介绍的是如何深入把经典的信号处理技术引入到深度学习技术中,用来分析各种序列数据(sequence data),比如股票价格、金融信号等,乃至更为一般的物理、经济、社会等活动的动态信号,抽象出有价值的模式,进而对其进行预测和分析。

如果大家对技术细节感兴趣,可以参考我们在ICML和 KDD上发表的论文。(注:本文末尾)

长期还是短期投资?

我们以资本市场的投资为例,来引出为什么要用傅里叶变换的方法对不同周期的价格信号进行分析。

所有人在进入股市前,都首先要做出一个根本的投资策略:究竟投资有潜力的股票、进而获得长期回报,还是打打短线,赚一票就走路?显然,对于不同的策略,用来预测的信号也是不一样的。

对长期投资者来说,短期的价格波动不应该对其预测的长期股价产生太大影响,这类投资者更应该关注的是股价在更大周期上的波动;用更专业的术语来说就是低频率、长周期的股价信号应该对预测长期股价更有价值。

对短期投资者、特别对高频交易的投资者来说,他们更关心的是短期的价格波动,进而以小步快跑的方式获得累积的收益。也就是说,这类打短线的投资者更对高频地、短周期的股价波动敏感。

从状态记忆(State Memory)到多频率状态记忆(State-Frequency Memory)

炒股的例子告诉我们,对特定的应用,不同频率上的信号所起到的作用是不一样的。这类问题在很多工程应用中都有所体现。

比如对特定物体进行跟踪。作为一个经典的预测问题,物体跟踪通过特定的观察量(比如雷达、激光雷达等)对某个物体实际的位置进行持续的预测。这个时候,找到符合物体运动周期的特征,并用这些特定频率上的特征对运动进行分析就非常重要。

同样地,在分析、预测社会活动时,这种特定周期或频率的特征模式往往也是非常常见的。比如,在分析交通流量时,上下班周期、在一个星期内不同天的周期等,对交通流量的分析预测都会起到非常关键的作用。找到并针对性地量化分析这些周期对预测未来趋势的影响,往往是分析序列数据的关键。

这些都启发我们:在对信号进行预测时,需要对不同频率的信号区别对待,针对特定的任务加以合理应用。

37668d295ec74c676f1839bf7543abcf7ad7b591

而经典的LSTM仅仅对时间信号的状态向量做为记忆元(Memory Cell)进行建模,而忽略了另一个重要维度频率。而我们将状态(state)-频率(frequency)联合起来,形成一个状态-频率矩阵(State-Frequency Matrix,SFM) 而非仅仅用一个向量来表示状态。

矩阵中的每个元素,用它的行来索引不同状态:每个状态在物理意义上可以理解成代表某个引发信号波动的因子。另一方面,用SFM的列来检索不同的频率,代表不同因子对不同频率的影响。

有了SFM做为记忆元,我们就可以像一般LSTM里那样定义输入门、输出门、遗忘门和控制信息的流向。特别地,如果我们对高频、短周期信号(比如短期高频的交易时)更关心,对应SFM矩阵的高频部分的信息流就会被输入门、输出门选定出来对信号序列进行建模。反之,如果我们对低频的、长周期信号(比如长期投资时)更有兴趣,那么我们就可以让模型聚焦在用SFM中的低频部分进行分析。

具体SFM矩阵中高、低频分量的选择,将由针对特定问题所定义的目标函数,通过训练的方法来自动完成。比如,我们可以选择优化高频交易下的预测准确率或者收益,这时SFM中高频部分会起到更大的作用,从而被选中。

自适应的定义频率

另外一个重要的问题是,我们往往在事先无法确定那个频率上的分量更重要,这是我们可以通过允许模型以自适应的方式来确定这些频率。具体来说,我们可以把这些频率分量ω定义为输入、输出的函数来机器学习的方法来确定合适的频率。 

d9d77e438f05bf5a296cc7e4e4e1e1f8d2335175

同时意味着,随时具体某个任务外界环境的变化,比如出现某个特定金融事件,使得市场发生较平常更激烈动荡时,我们希望SFM的高频对应着更高的频率,来适应市场的变化。

这种自适应的调节分析频率的能力,有利于我们对那些非平稳(non-stationary)的序列数据进行建模、分析。

下面图中可以看到在对某个时间序列建模时,频率自适应模型A-SFM是如何随时间不断地调整其覆盖的频率段的。

c98f43fb07cb2897944e2c7df70f0cde89e4391f

更多的结果和详细的介绍,大家可以参看我们的论文。

Hao Hu§, Guo-Jun Qi*. State-Frequency Memory Recurrent Neural Networks, in Proceedings of International Conference on Machine Learning (ICML 2017), Sydney, Australia, August 6-11, 2017. [pdf]

Liheng Zhang§, Charu Aggarwal, Guo-Jun Qi*, Stock Price Prediction via Discovering Multi-Frequency Trading Patterns, in Proceedings of ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2017), Halifax, Nova Scotia, Canada, August 13-17, 2017 [pdf]


原文发布时间为:2018-02-17

本文作者:齐国君

本文来自云栖社区合作伙伴新智元,了解相关信息可以关注“AI_era”微信公众号

原文链接:【春节学AI炒股】深度学习引入信号处理技术,轻松分析股票等各种序列数据

相关文章
|
9天前
|
存储 机器学习/深度学习 人工智能
【AI系统】完全分片数据并行 FSDP
本文深入探讨了AI框架中针对权重数据、优化器数据和梯度数据的分布式并行实现,特别是在PyTorch框架下的具体方案。文章首先回顾了通用数据并行和分布式数据并行的概念,重点讨论了同步与异步数据并行的差异。接着,文章详细介绍了如何在PyTorch中实现弹性数据并行,特别是完全分片数据并行(FSDP)的机制,包括其如何通过分片模型状态和剩余状态来减少内存消耗,提高训练效率。此外,文章还探讨了混合精度训练、损失缩放和内存消耗估算等关键技术,为理解和实施高效的分布式训练提供了全面的指导。
29 9
【AI系统】完全分片数据并行 FSDP
|
9天前
|
机器学习/深度学习 人工智能 PyTorch
【AI系统】数据并行
数据并行是一种在分布式AI系统中广泛应用的技术,通过将数据集划分成多个子集并在不同计算节点上并行处理,以提高计算效率和速度。在大规模机器学习和深度学习训练中,数据并行可以显著加快模型训练速度,减少训练时间,提升模型性能。每个计算节点接收完整的模型副本,但处理不同的数据子集,从而分摊计算任务,提高处理速度和效率。数据并行按同步方式可分为同步数据并行和异步数据并行,按实现方式包括数据并行、分布式数据并行、完全分片的数据并行等。其中,分布式数据并行(DDP)是当前应用最广泛的并行算法之一,通过高效的梯度聚合和参数同步机制,确保模型一致性,适用于大型NPU集群和AI系统。
61 7
【AI系统】数据并行
|
12天前
|
机器学习/深度学习 传感器 边缘计算
基于深度学习的图像识别技术在自动驾驶中的应用####
随着人工智能技术的飞速发展,深度学习已成为推动自动驾驶技术突破的关键力量之一。本文深入探讨了深度学习算法,特别是卷积神经网络(CNN)在图像识别领域的创新应用,以及这些技术如何被集成到自动驾驶汽车的视觉系统中,实现对复杂道路环境的实时感知与理解,从而提升驾驶的安全性和效率。通过分析当前技术的最前沿进展、面临的挑战及未来趋势,本文旨在为读者提供一个全面而深入的视角,理解深度学习如何塑造自动驾驶的未来。 ####
50 1
|
17天前
|
机器学习/深度学习 人工智能 自然语言处理
揭秘AI:深度学习的奥秘与实践
本文将深入浅出地探讨人工智能中的一个重要分支——深度学习。我们将从基础概念出发,逐步揭示深度学习的原理和工作机制。通过生动的比喻和实际代码示例,本文旨在帮助初学者理解并应用深度学习技术,开启AI之旅。
|
18天前
|
机器学习/深度学习 数据采集 传感器
基于深度学习的图像识别技术在自动驾驶中的应用研究####
本文旨在探讨深度学习技术,特别是卷积神经网络(CNN)在自动驾驶车辆图像识别领域的应用与进展。通过分析当前自动驾驶技术面临的挑战,详细介绍了深度学习模型如何提升环境感知能力,重点阐述了数据预处理、网络架构设计、训练策略及优化方法,并展望了未来发展趋势。 ####
60 6
|
16天前
|
机器学习/深度学习 算法框架/工具 网络架构
深度学习中的正则化技术及其对模型性能的影响
本文深入探讨了深度学习领域中正则化技术的重要性,通过分析L1、L2以及Dropout等常见正则化方法,揭示了它们如何帮助防止过拟合,提升模型的泛化能力。文章还讨论了正则化在不同类型的神经网络中的应用,并指出了选择合适正则化策略的关键因素。通过实例和代码片段,本文旨在为读者提供关于如何在实际问题中有效应用正则化技术的深刻见解。
|
12天前
|
机器学习/深度学习 存储 人工智能
探索深度学习的奥秘:从理论到实践的技术感悟
本文深入探讨了深度学习技术的核心原理、发展历程以及在实际应用中的体验与挑战。不同于常规摘要,本文旨在通过作者个人的技术实践经历,为读者揭示深度学习领域的复杂性与魅力,同时提供一些实用的技术见解和解决策略。
28 0
|
16天前
|
机器学习/深度学习 传感器 自动驾驶
基于深度学习的图像识别技术及其在自动驾驶中的应用####
本文深入探讨了深度学习驱动下的图像识别技术,特别是在自动驾驶领域的革新应用。不同于传统摘要的概述方式,本节将直接以“深度学习”与“图像识别”的技术融合为起点,简述其在提升自动驾驶系统环境感知能力方面的核心作用,随后快速过渡到自动驾驶的具体应用场景,强调这一技术组合如何成为推动自动驾驶从实验室走向市场的关键力量。 ####
38 0
|
9天前
|
机器学习/深度学习 传感器 数据采集
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
48 5
|
1天前
|
机器学习/深度学习 网络架构 计算机视觉
深度学习在图像识别中的应用与挑战
【10月更文挑战第21天】 本文探讨了深度学习技术在图像识别领域的应用,并分析了当前面临的主要挑战。通过研究卷积神经网络(CNN)的结构和原理,本文展示了深度学习如何提高图像识别的准确性和效率。同时,本文也讨论了数据不平衡、过拟合、计算资源限制等问题,并提出了相应的解决策略。
30 19