十分钟理解Actor模式

简介:

Actor模式是一种并发模型,与另一种模型共享内存完全相反,Actor模型share nothing。所有的线程(或进程)通过消息传递的方式进行合作,这些线程(或进程)称为Actor。共享内存更适合单机多核的并发编程,而且共享带来的问题很多,编程也困难。随着多核时代和分布式系统的到来,共享模型已经不太适合并发编程,因此几十年前就已经出现的Actor模型又重新受到了人们的重视。MapReduce就是一种典型的Actor模式,而在语言级对Actor支持的编程语言Erlang又重新火了起来,Scala也提供了Actor,但是并不是在语言层面支持,Java也有第三方的Actor包,Go语言channel机制也是一种类Actor模型。


单线程编程


单核单机时代一般都是单线程编程,如果把程序比作一个工厂,那么只有一个工人,这个工人负责所有的事情,所有的原料,工具产品等都放到一个地方,因为只有一个人,因此使用一套工具就行,取原料也不用排队等。wKioL1WOK1TARuclAADkQl8bN5U550.jpg


多线程编程-共享内存


到了多核时代,有多个工人,这些工人共同使用一个仓库和车间,干什么都要排队。比如我要从一块钢料切出一块来用,我得等别人先用完。有个扳手,另一个人在用,我得等他用完。两个人都要用一个切割机从一块钢材切一块钢铁下来用,但是一个人拿到了钢材,一个人拿到了切割机,他们互相都不退让,结果谁都干不了活。

wKiom1WOKpHgGDoXAAFY8MuvOgA842.jpg

假如现在有一个任务,找100000以内的素数的个数,最多使用是个线程,如果用共享内存的方法,可以用下面的代码实现。可以看到,这些线程共享了currentNum和totalPrimeCount,对它们做操作时必须上锁。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
public  class  PrimeCount  implements  Runnable {
    
     private  int  currentNum =  2 ;   //从2开始找
     private  int  totalPrimeCount =  0 //当前已经找到的
     
     //取一个数,不能重复,最大到100000
     private  int  incrCurrentNum() { 
         synchronized  ( this ) {      //如果不用锁,必然会出错。
             if (currentNum >  100000 ) {
                 return  - 1 ;
             else  {
                 int  result = currentNum;
                 currentNum++;
                 return  result;
             }  
         }
     }
     
    //把某个线程找到的素数个数加上
     private  void  accPrimeCount( int  count) { 
         synchronized  ( this ) {
             totalPrimeCount += count;
         }
     }
     
     @Override
      //一直取数并判断是否为素数,取不到了就把找到的个数累加
     public  void  run() { 
         int  primeCount =  0 ;
         int  num;
         while ((num=incrCurrentNum()) != - 1 ) {
             if (isPrime(num)) {
                 primeCount++;
             }
         }
         accPrimeCount(primeCount);
     }
     private  boolean  isPrime( int  num) {
         for ( int  i =  2 ; i < num; i++) {
             if (num % i ==  0 ) {
                 return  false ;
             }
         }
         return  true ;
    
     
     @SuppressWarnings ( "static-access" )
     public  static  void  main(String[] args){
         PrimeCount pc =  new  PrimeCount();
         for ( int  i =  0 ; i <  10 ; i++) {
             new  Thread(pc).start();
         }
         try  {
             Thread.currentThread().sleep( 5000 );
         catch  (InterruptedException e) {
             // TODO Auto-generated catch block
             e.printStackTrace();
         }
         System.out.println(pc.getTotalPrimeCount());
     }
     
     public  int  getTotalPrimeCount() {
         return  totalPrimeCount;
     }
  
}


多线程/分布式编程-Actor模型


到了分布式系统时代,工厂已经用流水线了,每个人都有明确分工,这就是Actor模式。每个线程都是一个Actor,这些Actor不共享任何内存,所有的数据都是通过消息传递的方式进行的。

wKiom1WOKyPBDRjpAAGSeStUphQ651.jpg


如果用Actor模型实现统计素数个数,那么我们需要1个actor做原料的分发,就是提供要处理的整数,然后10个actor加工,每次从分发actor那里拿一个整数进行加工,最终把加工出来的半成品发给组装actor,组装actor把10个加工actor的结果汇总输出。

用scala实现,下面是工程的结构:

wKioL1WdJcqjpAFzAAD5VFWMxWE737.jpg

这是它们传递的消息,有一些指令,剩下的都是Int数据:

wKiom1WdJGejogeEAADFcGfvlHM213.jpg

一个Actor的代码结构一般是下面这种结构,不停的接受消息并处理,没有消息就等待:

wKioL1WdJniAb7CiAACCrB88e3w417.jpg

组装者代码:

wKiom1WdJQuC2KISAAD_TzvsHmU128.jpg

分发者代码:

wKiom1WdJT6ToafUAAHzO5b-wbg835.jpg

加工者代码:

wKioL1WdJ8aQb3cnAAH3zqiR_OY263.jpg

主线程代码:

wKiom1WdJkDCESVPAAHn1a3-nqU963.jpg

工程代码可以在附件中下载。这个代码实现的效果与前面用Java实现的是一样的,但是各个线程没有共享内存,也没有锁,这样开发起来容易,而且更适合分布式编程,因为分布式编程本身就不适合共享内存。Scala的Actor不能原生的支持分布式,但是Erlang可以,使用Erlang的Actor,分布式编程就和本地编程基本一样。但是Erlang的语法难懂,而且没有变量,几乎所有需要使用循环的地方都得用递归。


本文转自nxlhero 51CTO博客,原文链接:http://blog.51cto.com/nxlhero/1666250,如需转载请自行联系原作者

相关文章
|
安全 数据安全/隐私保护
配置samba的访问密码和用户名
出于安全问题,需要为samba配置密码: $ smbpasswd -a 按提示输入想使用的密码即可 另外 /etc/samba/smb.conf 的 [global] 段必须有: security = user 如此这般,局域网的人访问你的电脑都需要以上命令设置的用户名和密码。
11964 2
|
前端开发 网络协议 Dubbo
超详细Netty入门,看这篇就够了!
本文主要讲述Netty框架的一些特性以及重要组件,希望看完之后能对Netty框架有一个比较直观的感受,希望能帮助读者快速入门Netty,减少一些弯路。
93037 32
超详细Netty入门,看这篇就够了!
|
iOS开发 Python
mac:python安装路径
了解python的安装路径,有利于处对python安装的管理。比如删除多余的python,可以在这些路径中查询处理。
1598 0
|
缓存 网络协议 算法
Golang简单实现 分布式缓存+一致性哈希+节点再平衡(gossip + consistent + rebalance)
Golang简单实现 分布式缓存+一致性哈希+节点再平衡(gossip + consistent + rebalance)
414 0
|
存储 人工智能 缓存
官宣开源|阿里云与清华大学共建AI大模型推理项目Mooncake
2024年6月,国内优质大模型应用月之暗面Kimi与清华大学MADSys实验室(Machine Learning, AI, Big Data Systems Lab)联合发布了以 KVCache 为中心的大模型推理架构 Mooncake。
|
算法 安全 Go
Go切片删除元素错过这篇你就out了
Go切片删除元素错过这篇你就out了
3774 0
|
算法 网络协议 安全
一个关于proto 文件的经验分享 :gRPC 跨语言双端通信显示错误码:12 UNIMPLEMENTED (附赠gRPC错误码表)
一个关于proto 文件的经验分享 :gRPC 跨语言双端通信显示错误码:12 UNIMPLEMENTED (附赠gRPC错误码表)
516 0
|
缓存 算法 Java
Go语言性能调优:核心策略与技巧
【2月更文挑战第18天】本文详细探讨了Go语言性能调优的核心策略和技巧。我们将从代码层面、内存管理、并发控制等多个维度出发,介绍如何通过优化代码结构、减少内存分配、提高并发效率等手段来提升Go程序的性能。通过本文的学习,将能够掌握一套实用的Go语言性能调优方法,为提升程序性能提供有力支持。
|
存储 缓存 负载均衡
图解一致性哈希算法,看这一篇就够了!
近段时间一直在总结分布式系统架构常见的算法。前面我们介绍过布隆过滤器算法。接下来介绍一个非常重要、也非常实用的算法:一致性哈希算法。通过介绍一致性哈希算法的原理并给出了一种实现和实际运用的案例,带大家真正理解一致性哈希算法。
26250 64
图解一致性哈希算法,看这一篇就够了!