Akka在Flink中的使用剖析

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: Akka与Actor 模型 Akka是一个用来开发支持并发、容错、扩展性的应用程序框架。它是actor model的实现,因此跟Erlang的并发模型很像。在actor模型的上下文中,所有的活动实体都被认为是互不依赖的actor。

Akka与Actor 模型

Akka是一个用来开发支持并发容错扩展性的应用程序框架。它是actor model的实现,因此跟Erlang的并发模型很像。在actor模型的上下文中,所有的活动实体都被认为是互不依赖的actor。actor之间的互相通信是通过彼此之间发送异步消息来实现的。每个actor都有一个邮箱来存储接收到的消息。因此每个actor都维护着自己独立的状态。

flink-akka-actor-model

每个actor是一个单一的线程,它不断地从其邮箱中poll(拉取)消息,并且连续不断地处理。对于已经处理过的消息的结果,actor可以改变它自身的内部状态或者发送一个新消息或者孵化一个新的actor。尽管单个的actor是自然有序的,但一个包含若干个actor的系统却是高度并发的并且极具扩展性的。因为那些处理线程是所有actor之间共享的。这也是我们为什么不该在actor线程里调用可能导致阻塞的“调用”。因为这样的调用可能会阻塞该线程使得他们无法替其他actor处理消息。

Actor系统

一个actor系统是所有actor存活的容器。它也提供一些共享的服务,比如调度配置日志记录等。一个actor系统也同时维护着一个为所有actor服务的线程池。多个actor系统可以在一台主机上共存。如果一个actor系统以RemoteActorRefProvider的身份启动,那么它可以被某个远程主机上的另一个actor系统访问。actor系统会自动得识别actor消息被路由到处于同一个actor系统内的某个actor还是处于一个远程actor系统内的actor。如果是本地通信的情况(同一个actor系统),那么消息的传输可以有效得利用共享内存的方式;如果是远程通信,那么消息将通过网络栈来传输。

actor基于层次化的组织形式(也就是说它基于树形结构)。每个新创建的actor都将以创建它的actor作为父节点。层次结构有利于监督、管理(父actor管理其子actor)。如果某个actor的子actor产生错误,该actor将会得到通知,如果它有能力处理这个错误,那么它会尝试处理否则它会负责重启该子actor。系统创建的首个actor将托管于系统提供的guardian actor/user

Flink为什么要用Akka来代替RPC

原先的RPC服务存在的问题:

  • 没有带回调的异步调用功能,这也是为什么Flink的多个运行时组件需要poll状态的原因,这导致了不必要的延时。
  • 没有exception forwarding,产生的异常都只能简单地吞噬掉,这使得在运行时产生一些非常难调试的古怪问题
  • 处理器的线程数受到限制,RPC只能处理一定量的并发请求,这迫使你不得不隔离线程池
  • 参数不支持原始数据类型(或者原始数据类型的装箱类型),所有的一切都必须有一个特殊的序列化类
  • 棘手的线程模型,RPC会持续的产生或终止线程

采用Akka的actor模型带来的好处:

  • Akka解决上述的所有问题,并对外透明
  • supervisor模型允许你对actor做失效检测,它提供一个统一的方式来检测与处理失败(比如心跳丢失、调用失败…)
  • Akka有工具来持久化有状态的actor,一旦失败可以在其他机器上重启他们。这个机制在master fail-over的场景下将会变得非常有用并且很重要。
  • 你可以定义许多call target(actor),在TaskManager上的任务可以直接在JobManager上调用它们的ExecutionVertex,而不是调用JobManager,让其产生一个线程来查看执行状态。
  • actor模型接近于在actor上采用队列模型一个接一个的运行,这使得状态机的并发模型变得简单而又健壮

Akka在Flink中的使用

Akka在Flink中用于三个分布式技术组件之间的通信,他们是JobClientJobManagerTaskManager。Akka在Flink中主要的作用是用来充当一个coordinator的角色。

JobClient获取用户提交的job,然后将其提交给JobManagerJobManager随后对提交的job进行执行的环境准备。首先,它会分配job的执行需要的大量资源,这些资源主要是在TaskManager上的execution slots。在资源分配完成之后,JobManager会部署不同的task到特定的TaskManager上。在接收到task之后,TaskManager会创建线程来执行。所有的状态改变,比如开始计算或者完成计算都将给发回给JobManager。基于这些状态的改变,JobManager将引导task的执行直到其完成。一旦job完成执行,其执行结果将会返回给JobClient,进而告知用户

它们之间的一些通信流程如下图所示:

flink-actor-arch

上图中三个使用Akka通信的分布式组件都具有自己的actor系统。

代码分析

当前关于Akka相关的代码,都在runtimemodule下,但实现的代码是JavaScala混合的(也许这块的逻辑Flink正在过渡阶段,后续会有更多的逻辑改为用Scala实现)。

其中,只有JobClient的Akka代码是用Java实现的。JobManager以及TaskManager跟Akka相关的逻辑以Scala实现。

消息定义

  • Messages : 三个分布式组件都会用到的消息定义
  • JobClientMessages : JobClient相关的message,将会被org.apache.flink.runtime.client.JobClientActor使用
  • JobManagerMessages : JobManager相关的message
  • TaskManagerMessages : TaskManager相关的message定义

当然不止这么多消息,还有垂直划分的几种定义,比如:RegistrationMessages用于定义TaskManagerJobManager相关的register消息。

下面我们看看在Java和Scala中,Flink实现的actor的基类。

基类FlinkUntypedActor

在Akka提供的Java lib中,实现一个actor通常是靠继承UntypedActor来实现。FlinkUntypedActor也不例外。继承自UntypedActor的类,通常要覆盖onReceive方法,该方法的完整签名如下:

    public final void onReceive(Object message) throws Exception {}

 
 
  • 1

然后,通常在这个方法里会判断具体的消息类型,根据不同的消息类型来实现不同的处理逻辑。而在FlinkUntypedActor类中,它先对消息进行一轮验证,过滤掉非法的消息后,再处理各种消息的类型。验证主要是比对sessionID是否合法(即是否等同于leader session id),然后才会调用核心处理逻辑方法handleMessage。该方法是抽象方法,有待子类具体实现,目前只有涉及到JobClient处理的JobClientActor类继承了该类。

由scala实现的FlinkActor几乎具有相同的语义,这里不再啰嗦。

总结

本篇主要介绍了Akka,并对Akka在Flink中的使用进行了大致的介绍。其实,就源码而言倒没有太多值得关注的地方,主要还是三个分布式组件之间的通信/协同逻辑,下篇我们会谈这方面的话题。


原文发布时间为:2016-04-14

本文作者:vinoYang

本文来自云栖社区合作伙伴CSDN博客,了解相关信息可以关注CSDN博客。

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
目录
相关文章
|
分布式计算 流计算 Spark
Flink - CountTrigger && ProcessingTimeTriger 详解
Flink 针对 window 提供了多种自定义 trigger,其中常见的有 CountTrigger 和 ProcessingTimeTrigger,下面通过两个 demo 了解一下两个 Trigger 的内部实现原理与窗口触发的相关知识。
1170 0
|
8月前
|
数据处理 Apache 流计算
【Flink】Flink的CEP机制
【4月更文挑战第21天】【Flink】Flink的CEP机制
|
8月前
|
分布式计算 大数据 数据处理
【Flink】Flink跟Spark Streaming的区别?
【4月更文挑战第17天】【Flink】Flink跟Spark Streaming的区别?
|
Java Linux 网络安全
flink快速开始
flink快速开始
55 1
|
8月前
|
流计算
Flink Exactly-Once
Flink Exactly-Once
56 0
|
SQL 存储 算法
深入解读 Flink 1.17
阿里云技术专家,Apache Flink PMC Member & Committer、Flink CDC Maintainer 徐榜江(雪尽) 在深入解读 Flink 1.17 的分享。
6689 0
深入解读 Flink 1.17
|
SQL 消息中间件 分布式计算
Flink的重要特点
Flink的重要特点
204 0
Flink的重要特点
|
SQL 消息中间件 分布式计算
【Flink】(一)初识 Flink
【Flink】(一)初识 Flink
201 0
【Flink】(一)初识 Flink
|
分布式计算 Java Apache
Flink介绍
Flink介绍
217 0
|
消息中间件 存储 分布式计算
Flink实战(八) - Streaming Connectors 编程(上)
Flink实战(八) - Streaming Connectors 编程(上)
398 0
Flink实战(八) - Streaming Connectors 编程(上)