科学家正在利用AI预测人类死亡时间,从而改善医疗服务质量

简介:

吴恩达与斯坦福大学计算机科学系教授Anand Avati、斯坦福大学生物医学信息学研究中心Kenneth Jung、Lance Downing与Nigam H. Shah,以及斯坦福大学医学院Stephanie Harmon六位斯坦福大学科学家组成的研究小组正在研究如何利用人工智能技术预测人类的死亡时间,从而改善对其的姑息治疗程度,或者对患有严重疾病的患者提供专门的护理。

科学家正在利用AI预测人类死亡时间,从而改善医疗服务质量

研究报告显示,大约80%的美国人希望能在自己家中度过生命的最后时光,但是如愿的只有20%。事实上,超过60%的死亡发生在医院的急诊病房,而病人在临终前的最后一段时间会接受侵入性治疗。

在过去10年间,可以提供姑息治疗的医院一直在增加。在2008年,全美所有病床数超过50张的医院中,有53%的医院设有姑息治疗团队,2015年这一比例已攀升至67%。虽然可以提供姑息治疗的医院越来越多,但是根据国家姑息治疗登记处(National Palliative Care Registry)的数据,在所有需要接受姑息治疗的病人(占所有住院病人7% - 8%)中,只有不到一半的人真正接受了这种治疗。

这与医生在判断患者的生存时长方面往往过于乐观有很大的关系。此外,姑息治疗的相关护理人员及资源也较为有限。因此,为了尽可能帮助更多适合此种安慰疗法的病患,斯坦福大学的研究小组希望利用人工智能技术发现剩余生命仅为三到十二个月的对象。

确定为这个时间段的依据是:如果病患将在三个月内死亡,那么,姑息治疗小组将没有足够的时间来进行筹备。但如果病患将在十二个月后死亡,则具体死亡时间很难得到准确预测。

以往的做法是,由医生检查每一份病例表,借此确定病患是否有资格获得姑息治疗方式。但这整个过程非常耗时,而且医生的个人偏见可能对最终护理决定产生影响。

对此,报告指出:“该预测结果将帮助姑息治疗团队得以主动接触这些患者,并根据患者的EHR(即电子健康记录),利用深度学习技术提供客观的治疗建议。而不是依赖主治医师的推介,或花时间研究所有病人的病例。”

具体而言,算法会自动评估住院病人的EHR数据,帮助姑息治疗怀团队判断哪些病人可能需要姑息治疗。实际上就是用病人先前的HER数据训练出来的一个神经网络。

报告中介绍了几类能够使病人的预后信息(预后是指预测疾病的可能病程和结局)更加客观和智能化的方法,包括用于姑息治疗的预后方法、加护病房ICU的预后方法、早期识别的预后方法,并详述了大数据时代的预后方法。

Shah在接受CNBC采访时表示,虽然利用AI技术仍然可能导致某些本应得到护理的病患无法顺利完成申请,但实际效果还是优于人工分析。

“目前,我们错过了大多数应该接受姑息治疗的患者,这是因为临床医生对于生存时间的估计太过乐观……只有不足1%的病患能够在逝世前接受六个月以上的姑息治疗。考虑到这一点,尽管人工智能辅助方法不可避免也会错过半数符合条件的患者,但其成效却远优于现有状况。”

为了进行这项研究,研究小组使用了斯坦福医院及露西尔-帕卡德儿童医院中的200万份成人和儿童电子病历作为数据样本。

当然,Avati也强调:“这套模型的预测结果仅被用于在姑息治疗小组进行病例审查(及自动转诊)时推荐部分符合条件的病患。人类医生仍然负责整个审查流程的主导工作,而该项目所得出的结果只作为符合姑息治疗条件的参考,而非对死亡时间的直接预测。”

死亡预测作为一种晚期疾病判断方式,能够协助确定符合条件的候选病患。但需要强调的是,姑息治疗与生命终期护理并不是一回事。

Harman在采访当中表示:“在医院中进行骨髓移植(治愈性治疗)的病患往往都不得不面对一些严重的副作用,比如治疗方案引起的剧烈疼痛等等。对于这样的病人,医生往往会采取姑息治疗以缓解副作用,并帮助病患完成治疗过程。”

与此同时,报告还发现,死亡时间是其中一项有效的指向性指标。举例来说,对于被AI预测为有九成可能性在三到十二个月内逝世的病患,该团队随机选取了其中50位进行人工复查。结果显示,这50位病患全部“适合转诊”。换言之,该AI方案的效果完全符合预期。










原文出处:科技行者
转载请与作者联系,同时请务必标明文章原始出处和原文链接及本声明。
目录
相关文章
|
11天前
|
机器学习/深度学习 人工智能 自然语言处理
AI在医疗领域的应用及其挑战
【10月更文挑战第34天】本文将探讨人工智能(AI)在医疗领域的应用及其面临的挑战。我们将从AI技术的基本概念入手,然后详细介绍其在医疗领域的各种应用,如疾病诊断、药物研发、患者护理等。最后,我们将讨论AI在医疗领域面临的主要挑战,包括数据隐私、算法偏见、法规合规等问题。
30 1
|
17天前
|
人工智能 搜索推荐 安全
AI技术在医疗领域的应用与挑战
【10月更文挑战第27天】 本文探讨了人工智能(AI)在医疗领域的应用,包括疾病诊断、药物研发和患者管理等方面。同时,也分析了AI在医疗领域面临的挑战,如数据隐私、伦理问题和技术局限性等。通过对这些方面的深入分析,我们可以更好地理解AI在医疗领域的潜力和发展方向。
123 59
|
21天前
|
存储 人工智能 数据可视化
高效率,低成本!且看阿里云AI大模型如何帮助企业提升客服质量和销售转化率
在数字化时代,企业面临海量客户对话数据处理的挑战。阿里云推出的“AI大模型助力客户对话分析”解决方案,通过先进的AI技术和智能化分析,帮助企业精准识别客户意图、发现服务质量问题,并生成详尽的分析报告和可视化数据。该方案采用按需付费模式,有效降低企业运营成本,提升客服质量和销售转化率。
高效率,低成本!且看阿里云AI大模型如何帮助企业提升客服质量和销售转化率
|
8天前
|
机器学习/深度学习 人工智能 算法
AI在医疗领域的应用与挑战
本文探讨了人工智能(AI)在医疗领域的应用,包括其在疾病诊断、治疗方案制定、患者管理等方面的优势和潜力。同时,也分析了AI在医疗领域面临的挑战,如数据隐私、伦理问题以及技术局限性等。通过对这些内容的深入分析,旨在为读者提供一个全面了解AI在医疗领域现状和未来发展的视角。
39 10
|
9天前
|
机器学习/深度学习 人工智能 监控
探索AI在医疗领域的应用与挑战
本文深入探讨了人工智能(AI)在医疗领域中的应用现状和面临的挑战。通过分析AI技术如何助力疾病诊断、治疗方案优化、患者管理等方面的创新实践,揭示了AI技术为医疗行业带来的变革潜力。同时,文章也指出了数据隐私、算法透明度、跨学科合作等关键问题,并对未来的发展趋势进行了展望。
|
12天前
|
人工智能 安全 测试技术
探索AI在软件开发中的应用:提升开发效率与质量
【10月更文挑战第31天】在快速发展的科技时代,人工智能(AI)已成为软件开发领域的重要组成部分。本文探讨了AI在代码生成、缺陷预测、自动化测试、性能优化和CI/CD中的应用,以及这些应用如何提升开发效率和产品质量。同时,文章也讨论了数据隐私、模型可解释性和技术更新等挑战。
|
10天前
|
机器学习/深度学习 人工智能 自然语言处理
自动化测试的新篇章:利用AI提升软件质量
【10月更文挑战第35天】在软件开发的海洋中,自动化测试犹如一艘救生艇,它帮助团队确保产品质量,同时减少人为错误。本文将探索如何通过集成人工智能(AI)技术,使自动化测试更加智能化,从而提升软件测试的效率和准确性。我们将从AI在测试用例生成、测试执行和结果分析中的应用出发,深入讨论AI如何重塑软件测试领域,并配以实际代码示例来说明这些概念。
38 3
|
11天前
|
机器学习/深度学习 人工智能 算法
探索AI在医疗诊断中的应用及其未来趋势
【10月更文挑战第34天】随着人工智能技术的飞速发展,其在医疗领域的应用也日益广泛。本文将探讨AI技术在医疗诊断中的具体应用案例,分析其对提升诊断效率和准确性的积极影响,并预测未来AI在医疗诊断中的发展趋势。通过实际代码示例,我们将深入了解AI如何帮助医生进行更精准的诊断。
|
12天前
|
机器学习/深度学习 人工智能 搜索推荐
探索AI在医疗诊断中的革命性应用
【10月更文挑战第29天】 随着人工智能技术的飞速发展,其在医疗领域的应用已成为推动现代医疗服务创新的重要力量。本文旨在探讨AI技术如何在医疗诊断中发挥其独特优势,通过分析AI在影像诊断、疾病预测和个性化治疗计划制定等方面的应用案例,揭示AI技术如何提高诊断的准确性和效率,以及面临的挑战和未来发展趋势。
34 1
|
13天前
|
人工智能 算法
AI技术在医疗领域的应用及其挑战
【10月更文挑战第31天】本文将探讨AI技术在医疗领域的应用及其面临的挑战。我们将从AI技术的基本概念开始,然后详细介绍其在医疗领域的应用,包括疾病诊断、药物研发、患者护理等方面。最后,我们将讨论AI技术在医疗领域面临的挑战,如数据隐私、算法偏见等问题。

热门文章

最新文章