科学家正在利用AI预测人类死亡时间,从而改善医疗服务质量

简介:

吴恩达与斯坦福大学计算机科学系教授Anand Avati、斯坦福大学生物医学信息学研究中心Kenneth Jung、Lance Downing与Nigam H. Shah,以及斯坦福大学医学院Stephanie Harmon六位斯坦福大学科学家组成的研究小组正在研究如何利用人工智能技术预测人类的死亡时间,从而改善对其的姑息治疗程度,或者对患有严重疾病的患者提供专门的护理。

科学家正在利用AI预测人类死亡时间,从而改善医疗服务质量

研究报告显示,大约80%的美国人希望能在自己家中度过生命的最后时光,但是如愿的只有20%。事实上,超过60%的死亡发生在医院的急诊病房,而病人在临终前的最后一段时间会接受侵入性治疗。

在过去10年间,可以提供姑息治疗的医院一直在增加。在2008年,全美所有病床数超过50张的医院中,有53%的医院设有姑息治疗团队,2015年这一比例已攀升至67%。虽然可以提供姑息治疗的医院越来越多,但是根据国家姑息治疗登记处(National Palliative Care Registry)的数据,在所有需要接受姑息治疗的病人(占所有住院病人7% - 8%)中,只有不到一半的人真正接受了这种治疗。

这与医生在判断患者的生存时长方面往往过于乐观有很大的关系。此外,姑息治疗的相关护理人员及资源也较为有限。因此,为了尽可能帮助更多适合此种安慰疗法的病患,斯坦福大学的研究小组希望利用人工智能技术发现剩余生命仅为三到十二个月的对象。

确定为这个时间段的依据是:如果病患将在三个月内死亡,那么,姑息治疗小组将没有足够的时间来进行筹备。但如果病患将在十二个月后死亡,则具体死亡时间很难得到准确预测。

以往的做法是,由医生检查每一份病例表,借此确定病患是否有资格获得姑息治疗方式。但这整个过程非常耗时,而且医生的个人偏见可能对最终护理决定产生影响。

对此,报告指出:“该预测结果将帮助姑息治疗团队得以主动接触这些患者,并根据患者的EHR(即电子健康记录),利用深度学习技术提供客观的治疗建议。而不是依赖主治医师的推介,或花时间研究所有病人的病例。”

具体而言,算法会自动评估住院病人的EHR数据,帮助姑息治疗怀团队判断哪些病人可能需要姑息治疗。实际上就是用病人先前的HER数据训练出来的一个神经网络。

报告中介绍了几类能够使病人的预后信息(预后是指预测疾病的可能病程和结局)更加客观和智能化的方法,包括用于姑息治疗的预后方法、加护病房ICU的预后方法、早期识别的预后方法,并详述了大数据时代的预后方法。

Shah在接受CNBC采访时表示,虽然利用AI技术仍然可能导致某些本应得到护理的病患无法顺利完成申请,但实际效果还是优于人工分析。

“目前,我们错过了大多数应该接受姑息治疗的患者,这是因为临床医生对于生存时间的估计太过乐观……只有不足1%的病患能够在逝世前接受六个月以上的姑息治疗。考虑到这一点,尽管人工智能辅助方法不可避免也会错过半数符合条件的患者,但其成效却远优于现有状况。”

为了进行这项研究,研究小组使用了斯坦福医院及露西尔-帕卡德儿童医院中的200万份成人和儿童电子病历作为数据样本。

当然,Avati也强调:“这套模型的预测结果仅被用于在姑息治疗小组进行病例审查(及自动转诊)时推荐部分符合条件的病患。人类医生仍然负责整个审查流程的主导工作,而该项目所得出的结果只作为符合姑息治疗条件的参考,而非对死亡时间的直接预测。”

死亡预测作为一种晚期疾病判断方式,能够协助确定符合条件的候选病患。但需要强调的是,姑息治疗与生命终期护理并不是一回事。

Harman在采访当中表示:“在医院中进行骨髓移植(治愈性治疗)的病患往往都不得不面对一些严重的副作用,比如治疗方案引起的剧烈疼痛等等。对于这样的病人,医生往往会采取姑息治疗以缓解副作用,并帮助病患完成治疗过程。”

与此同时,报告还发现,死亡时间是其中一项有效的指向性指标。举例来说,对于被AI预测为有九成可能性在三到十二个月内逝世的病患,该团队随机选取了其中50位进行人工复查。结果显示,这50位病患全部“适合转诊”。换言之,该AI方案的效果完全符合预期。










原文出处:科技行者
转载请与作者联系,同时请务必标明文章原始出处和原文链接及本声明。
目录
相关文章
|
2月前
|
机器学习/深度学习 人工智能 算法
AI技术在医疗诊断中的应用及前景展望
本文旨在探讨人工智能(AI)技术在医疗诊断领域的应用现状、挑战与未来发展趋势。通过分析AI技术如何助力提高诊断准确率、缩短诊断时间以及降低医疗成本,揭示了其在现代医疗体系中的重要价值。同时,文章也指出了当前AI医疗面临的数据隐私、算法透明度等挑战,并对未来的发展方向进行了展望。
|
17天前
|
人工智能 API
MMedAgent:专为医疗领域设计的多模态 AI 智能体,支持医学影像处理、报告生成等多种医疗任务
MMedAgent 是专为医疗领域设计的多模态AI智能体,支持多种医疗任务,包括医学影像处理、报告生成等,性能优于现有开源方法。
87 19
MMedAgent:专为医疗领域设计的多模态 AI 智能体,支持医学影像处理、报告生成等多种医疗任务
|
19天前
|
机器学习/深度学习 人工智能 编解码
VideoVAE+:AI 生成视频高保真重建和跨模态重建工具,基于文本信息指导视频重建,提升视频细节质量
VideoVAE+ 是香港科技大学推出的先进跨模态视频变分自编码器,通过时空分离压缩机制和文本指导,实现了高效视频压缩与精准重建。
68 7
VideoVAE+:AI 生成视频高保真重建和跨模态重建工具,基于文本信息指导视频重建,提升视频细节质量
|
21天前
|
机器学习/深度学习 人工智能 算法
Enhance-A-Video:上海 AI Lab 推出视频生成质量增强算法,显著提升 AI 视频生成的真实度和细节表现
Enhance-A-Video 是由上海人工智能实验室、新加坡国立大学和德克萨斯大学奥斯汀分校联合推出的视频生成质量增强算法,能够显著提升视频的对比度、清晰度和细节真实性。
65 8
Enhance-A-Video:上海 AI Lab 推出视频生成质量增强算法,显著提升 AI 视频生成的真实度和细节表现
|
4天前
|
存储 机器学习/深度学习 人工智能
昇腾AI行业案例(六):基于 PraNet 的医疗影像分割
欢迎学习《基于 PraNet 的医疗影像分割》实验。在本实验中,你将深入了解如何运用计算机视觉(CV)领域的 AI 模型,搭建一个高效精准的医疗影像分割系统,专注于息肉分割任务,并利用开源数据集对模型效果加以验证。
10 1
|
1月前
|
机器学习/深度学习 人工智能 算法
探索AI在医疗诊断中的应用与挑战
【10月更文挑战第21天】 本文深入探讨了人工智能(AI)技术在医疗诊断领域的应用现状与面临的挑战,旨在为读者提供一个全面的视角,了解AI如何改变传统医疗模式,以及这一变革过程中所伴随的技术、伦理和法律问题。通过分析AI技术的优势和局限性,本文旨在促进对AI在医疗领域应用的更深层次理解和讨论。
128 31
|
1月前
|
数据采集 机器学习/深度学习 人工智能
AI在医疗诊断中的应用与挑战
随着人工智能(AI)技术的飞速发展,其在医疗领域的应用也日益广泛。从辅助医生进行疾病诊断到提供个性化治疗方案,AI技术正在改变着传统医疗模式。然而,AI在医疗诊断中的应用并非一帆风顺,面临着数据质量、模型可解释性、法规政策等一系列挑战。本文将从AI在医疗诊断中的具体应用场景出发,探讨其面临的主要挑战及未来发展趋势。
|
1月前
|
机器学习/深度学习 人工智能 安全
AI技术在医疗领域的应用与挑战
本文将探讨AI技术在医疗领域的应用及其带来的挑战。我们将介绍AI技术如何改变医疗行业的面貌,包括提高诊断准确性、个性化治疗方案和预测疾病风险等方面。同时,我们也将讨论AI技术在医疗领域面临的挑战,如数据隐私和安全问题、缺乏标准化和监管框架以及医生和患者对AI技术的接受程度等。最后,我们将通过一个代码示例来展示如何使用AI技术进行疾病预测。
69 2
|
1月前
|
机器学习/深度学习 人工智能 搜索推荐
AI技术在医疗领域的应用##
本文探讨了人工智能(AI)技术在医疗领域的应用,包括其在疾病诊断、治疗计划制定、患者监护和健康管理等方面的潜力。通过分析AI如何帮助医生更准确地诊断疾病,提高治疗效果,以及降低医疗成本,我们可以预见到一个更加智能、高效和人性化的医疗未来。 ##
|
1月前
|
机器学习/深度学习 人工智能 搜索推荐
AI技术在医疗领域的应用与前景
本文探讨了人工智能(AI)技术在医疗领域的应用,包括疾病诊断、治疗方案制定、药物研发等方面。通过对现有研究成果的梳理,分析了AI技术在提高医疗服务效率、降低医疗成本、改善患者体验等方面的潜力。同时,也指出了AI技术在医疗领域面临的挑战,如数据隐私保护、伦理道德问题等,并展望了未来的发展趋势。
221 2

热门文章

最新文章