初步理解MySQL的gap锁

简介: 初步理解MySQL的gap锁 初识MySQL的gap,觉得这个设计比较独特,和其他数据库的做法不太一样,所以整理一个简单的memo(虽然关于gap锁,相关资料已经很多了) 1. 什么是gap A place in an InnoDB index data structure where new values could be inserted. 说白了gap就是索引树中插入新记录的空隙。

初步理解MySQL的gap锁

初识MySQL的gap,觉得这个设计比较独特,和其他数据库的做法不太一样,所以整理一个简单的memo(虽然关于gap锁,相关资料已经很多了)

1. 什么是gap

A place in an InnoDB index data structure where new values could be inserted. 

说白了gap就是索引树中插入新记录的空隙。相应的gap lock就是加在gap上的锁,还有一个next-key锁,是记录+记录前面的gap的组合的锁。

2. gap锁或next-key锁的作用

http://dev.mysql.com/doc/refman/5.7/en/innodb-next-key-locking.html

To prevent phantoms, InnoDB uses an algorithm called next-key locking that combines index-row 
locking with gap locking. InnoDB performs row-level locking in such a way that when it searches
 or scans a table index, it sets shared or exclusive locks on the index records it encounters. 
Thus, the row-level locks are actually index-record locks. In addition, a next-key lock on 
an index record also affects the “gap” before that index record. That is, a next-key lock is 
an index-record lock plus a gap lock on the gap preceding the index record. If one session has 
a shared or exclusive lock on record R in an index, another session cannot insert a new index 
record in the gap immediately before R in the index order. 

简单讲就是防止幻读。通过锁阻止特定条件的新记录的插入,因为插入时也要获取gap锁(Insert Intention Locks)。

3. 什么时候会取得gap lock或nextkey lock

这和隔离级别有关,只在REPEATABLE READ或以上的隔离级别下的特定操作才会取得gap lock或nextkey lock。

http://dev.mysql.com/doc/refman/5.7/en/innodb-transaction-isolation-levels.html

2.1 REPEATABLE READ

... For consistent reads, there is an important difference from the READ COMMITTED isolation level:
 All consistent reads within the same transaction read the snapshot established by the first read. ...

For locking reads (SELECT with FOR UPDATE or LOCK IN SHARE MODE), UPDATE, and DELETE statements, 
locking depends on whether the statement uses a unique index with a unique search condition, 
or a range-type search condition. For a unique index with a unique search condition, 
InnoDB locks only the index record found, not the gap before it. For other search conditions, 
InnoDB locks the index range scanned, using gap locks or next-key locks to block insertions 
by other sessions into the gaps covered by the range. 

locking reads,UPDATE和DELETE时,除了对唯一索引的唯一搜索外都会获取gap锁或next-key锁。即锁住其扫描的范围。

下面对非唯一索引做个测试。

表定义如下:

mysql> show create table tb2;
+-------+------------------------------------------------------------------------------------------------------------------------------------------------+
| Table | Create Table                                                                                                                                   |
+-------+------------------------------------------------------------------------------------------------------------------------------------------------+
| tb2   | CREATE TABLE `tb2` (
  `id` int(11) DEFAULT NULL,
  `c1` int(11) DEFAULT NULL,
  KEY `tb2_idx1` (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 |
+-------+------------------------------------------------------------------------------------------------------------------------------------------------+
1 row in set (0.00 sec) 

表中有3条记录: 10,20,30。

mysql> select * from tb2;
+------+------+
| id   | c1   |
+------+------+
|   10 |    0 |
|   20 |    0 |
|   30 |    0 |
+------+------+
3 rows in set (0.01 sec) 

在REPEATABLE READ下,更新一条记录不提交,然后看看能阻塞另外的会话哪些操作。

SESSION 1:

SESSION 1中更新id=20的记录

mysql> begin;
Query OK, 0 rows affected (0.00 sec)

mysql> update tb2 set c1=2 where id=20;
Query OK, 1 row affected (0.04 sec)
Rows matched: 1  Changed: 1  Warnings: 0 

SESSION 2:

SESSION 2中,执行插入操作,发现[10,30)范围不能插入数据。

mysql> begin;
Query OK, 0 rows affected (0.00 sec)
mysql> insert into tb2 values(9,4);
Query OK, 1 row affected (0.00 sec)

mysql> insert into tb2 values(10,4);
ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction
mysql> insert into tb2 values(19,4);
ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction
mysql> insert into tb2 values(20,4);
ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction
mysql> insert into tb2 values(21,4);
ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction
mysql> insert into tb2 values(29,4);
ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction
mysql> insert into tb2 values(30,4);
Query OK, 1 row affected (0.01 sec) 

对于更新操作,仅20这条记录不能更新,因为更新操作不会去获取gap锁。

mysql> begin;
Query OK, 0 rows affected (0.00 sec)
mysql> update tb2 set c1=4 where id=10;
Query OK, 0 rows affected (0.00 sec)
Rows matched: 1  Changed: 0  Warnings: 0

mysql> update tb2 set c1=4 where id=20;
ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction
mysql> update tb2 set c1=4 where id=30;
Query OK, 0 rows affected (0.00 sec)
Rows matched: 2  Changed: 0  Warnings: 0 

如果SESSION 1的表扫描没有用到索引,那么gap或next-key锁住的范围是整个表,即任何值都不能插入。

2.2 READ COMMITTED

For locking reads (SELECT with FOR UPDATE or LOCK IN SHARE MODE), UPDATE statements, 
and DELETE statements, InnoDB locks only index records, not the gaps before them,
 and thus permits the free insertion of new records next to locked records. 

只会锁住已有记录,不会加gap锁。

2.3 SERIALIZABLE

This level is like REPEATABLE READ, but InnoDB implicitly converts all plain 
SELECT statements to SELECT ... LOCK IN SHARE MODE if autocommit is disabled. 

和REPEATABLE READ的主要区别在于把普通的SELECT变成SELECT ... LOCK IN SHARE MODE,即对普通的select都会获取gap锁或next-key锁。

4. REPEATABLE READ和幻读

在“consistent-read”时,REPEATABLE READ下看到是事务开始时的快照,即使其它事务插入了新行通常也是看不到的,所以在常见的场合可以避免幻读。 但是,"locking read"或更新,删除时是会看到已提交的修改的,包括新插入的行。

http://dev.mysql.com/doc/refman/5.7/en/innodb-consistent-read.html

If you want to see the “freshest” state of the database, use either the READ COMMITTED 
isolation level or a locking read: 

下面看一个例子

SESSION 1:

mysql> START TRANSACTION;
Query OK, 0 rows affected (0.00 sec)
mysql> select id,c1 from tb1 where id=1;
+----+------+
| id | c1   |
+----+------+
|  1 |  100 |
+----+------+
1 row in set (0.00 sec) 

SESSION 2:

mysql> update tb1 set c1=101 where id =1;
Query OK, 1 row affected (0.03 sec)
Rows matched: 1  Changed: 1  Warnings: 0 

SESSION 1:

mysql> select id,c1 from tb1 where id=1 LOCK IN SHARE MODE;
+----+------+
| id | c1   |
+----+------+
|  1 |  101 |
+----+------+
1 row in set (0.00 sec)

mysql> select id,c1 from tb1 where id=1;
+----+------+
| id | c1   |
+----+------+
|  1 |  100 |
+----+------+
1 row in set (0.00 sec)

mysql> update tb1 set c1=c1+1000 where id=1;
Query OK, 1 row affected (0.02 sec)
Rows matched: 1  Changed: 1  Warnings: 0

mysql> select id,c1 from tb1 where id=1;
+----+------+
| id | c1   |
+----+------+
|  1 | 1101 |
+----+------+
1 row in set (0.00 sec) 

上面update的行为违反了REPEATABLE READ的承诺,看到了事务开始后其它事务的并发更新。这对应用开发需要特别注意,这种情况下其它数据库通常都是报错的。

5. 其它

RR和RC相比还有一个重要的区别,RC下,扫描过但不匹配的记录不会加锁,或者是先加锁再释放,即semi-consistent read。但RR下扫描过记录都要加锁。这个差别对有全表扫描的更新的场景影响极大。详细参考http://hedengcheng.com/?p=771,关于MySQL的加锁处理,这篇文章讲得很透彻!

6. 参考

  • http://hedengcheng.com/?p=771
  • http://dev.mysql.com/doc/refman/5.7/en/innodb-consistent-read.html
  • http://dev.mysql.com/doc/refman/5.7/en/innodb-transaction-isolation-levels.html
  • http://dev.mysql.com/doc/refman/5.7/en/innodb-next-key-locking.html
  • http://blog.chinaunix.net/uid-20726500-id-3902528.html
  • http://blog.itpub.net/22664653/viewspace-750824/
  • http://www.bitscn.com/pdb/mysql/201405/227973.html
相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://www.aliyun.com/product/rds/mysql 
相关文章
|
7月前
|
SQL AliSQL 关系型数据库
MYSQL的全局锁和表锁
本文介绍了MySQL中的锁机制,包括全局锁、表级锁及其应用场景。全局锁通过`Flush tables with read lock (FTWRL)`实现,主要用于全库逻辑备份,但会阻塞更新和结构变更操作。表级锁分为显式表锁(`lock tables`)和元数据锁(MDL),前者用于控制并发访问,后者自动加锁以确保读写正确性。文章还探讨了如何安全地为小表添加字段,建议通过设置DDL等待时间或使用MariaDB/AliSQL的NOWAIT/WAIT功能避免业务阻塞。这些方法有助于在高并发场景下优化数据库性能与安全性。
195 0
|
SQL 关系型数据库 MySQL
MySQL 锁
MySQL里常见的几种锁
229 3
|
10月前
|
关系型数据库 MySQL 网络安全
如何排查和解决PHP连接数据库MYSQL失败写锁的问题
通过本文的介绍,您可以系统地了解如何排查和解决PHP连接MySQL数据库失败及写锁问题。通过检查配置、确保服务启动、调整防火墙设置和用户权限,以及识别和解决长时间运行的事务和死锁问题,可以有效地保障应用的稳定运行。
412 25
|
11月前
|
存储 关系型数据库 MySQL
MySQL进阶突击系列(06)MySQL有几种锁?| 别背答案,现场演示一下
本文详细解析了MySQL InnoDB存储引擎的锁机制,涵盖读锁、写锁、意向锁、记录锁、间隙锁和临键锁等8种锁类型。重点探讨了不同锁类型的加锁与释放方式,以及事务并发场景下的实战验证。通过具体示例,展示了在不同情况下锁的行为及其对事务的影响。文章还特别强调了锁的作用范围主要是索引,并解释了锁如何影响数据的读写操作。最后总结了并发事务中加锁规则,帮助读者深入理解MySQL的锁机制。
|
存储 关系型数据库 MySQL
优化 MySQL 的锁机制以提高并发性能
【10月更文挑战第16天】优化 MySQL 锁机制需要综合考虑多个因素,根据具体的应用场景和需求进行针对性的调整。通过不断地优化和改进,可以提高数据库的并发性能,提升系统的整体效率。
733 1
|
关系型数据库 MySQL Java
MySQL数据锁:Record Lock,Gap Lock 和 Next-Key Lock
本文基于 MySQL 8.0.30 版本及 InnoDB 引擎,深入解析三种行锁机制:记录锁(Record Lock)、间隙锁(Gap Lock)和临键锁(Next-key Lock)。记录锁锁定索引记录,确保事务唯一修改;间隙锁锁定索引间的间隙,防止新记录插入;临键锁结合两者,锁定范围并记录自身,有效避免幻读现象。通过具体示例展示了不同锁的作用机制及其在并发控制中的应用。
1261 2
|
存储 关系型数据库 MySQL
MySQL数据库锁:共享锁和独占锁
本文详细介绍了`InnoDB`存储引擎中的两种行级别锁:共享锁(S锁)与排他锁(X锁)。通过具体示例展示了这两种锁的工作机制及其在`InnoDB`与`MyISAM`引擎中的表现差异。文章还提供了锁的兼容性矩阵,帮助读者更好地理解锁之间的互斥关系。最后总结了两种锁的特点及适用场景。适合希望深入了解`MySQL`并发控制机制的读者阅读。
488 1
|
存储 关系型数据库 MySQL
MySQL锁,锁的到底是什么?
【10月更文挑战第16天】MySQL 锁锁定的是与数据和资源相关的对象,其目的是为了保证数据的一致性、避免冲突,并在并发环境下合理协调事务或操作的执行。理解锁的对象和意义对于优化数据库性能、处理并发问题至关重要。
358 0
|
关系型数据库 MySQL 数据库
mysql锁详解
通过理解并合理运用MySQL中的锁机制,开发者可以有效管理数据库并发访问,平衡性能与数据一致性需求。更多关于MySQL锁的深入探讨和最佳实践,请参考专业的数据库管理资源[[深入MySQL锁机制详解
246 0
|
存储 SQL 关系型数据库
MySQL 的锁机制,那么多的锁,该怎么区分?
MySQL 的锁机制,那么多的锁,该怎么区分?
197 0

推荐镜像

更多