解决C++代码单元测试中的难题-不可验证和IO调用

简介:

原帖发表在 Hadoop技术论坛

 

在做C++程序的单元测试时,大家经常会遇到两个问题

1.不方便验证测试结果,原因是因为不可访问保护和私有类成员

2.对于需要访问的connect、receive、send等不好绕过


这里介绍两种方法,即可解决:

1.在编译单元测试代码时,加上UNIT_TEST宏(名字可以为其它你喜欢的),并将private定义成public,即:

#define private public

这样就可以测试代码就可以随意访问类的任何成员了,单元测试就是要做白盒测试,将内部看得清清楚楚



以前喜欢使用友元类的方式,但那需要在代码中安插测试代码,所以这个办法更好。

2.对于IO问题,只需要从被测试再继承一下,然后重实现(如果为虚拟,则为隐藏)相应的方法,改成方便验证的,这样问题也就好解决了。设计模式中的Decorator模式用在这里非常合适。

 

 

    本文转自eyjian 51CTO博客,原文链接:http://blog.51cto.com/mooon/910225,如需转载请自行联系原作者


相关文章
|
27天前
|
数据采集 机器学习/深度学习 大数据
行为检测代码(一):超详细介绍C3D架构训练+测试步骤
这篇文章详细介绍了C3D架构在行为检测领域的应用,包括训练和测试步骤,使用UCF101数据集进行演示。
29 1
行为检测代码(一):超详细介绍C3D架构训练+测试步骤
|
29天前
|
机器学习/深度学习 人工智能 监控
提升软件质量的关键路径:高效测试策略与实践在软件开发的宇宙中,每一行代码都如同星辰般璀璨,而将这些星辰编织成星系的过程,则依赖于严谨而高效的测试策略。本文将引领读者探索软件测试的奥秘,揭示如何通过精心设计的测试方案,不仅提升软件的性能与稳定性,还能加速产品上市的步伐,最终实现质量与效率的双重飞跃。
在软件工程的浩瀚星海中,测试不仅是发现缺陷的放大镜,更是保障软件质量的坚固防线。本文旨在探讨一种高效且创新的软件测试策略框架,它融合了传统方法的精髓与现代技术的突破,旨在为软件开发团队提供一套系统化、可执行性强的测试指引。我们将从测试规划的起点出发,沿着测试设计、执行、反馈再到持续优化的轨迹,逐步展开论述。每一步都强调实用性与前瞻性相结合,确保测试活动能够紧跟软件开发的步伐,及时适应变化,有效应对各种挑战。
|
2月前
|
Web App开发 JavaScript 前端开发
添加浮动按钮点击滚动到网页底部的纯JavaScript演示代码 IE9、11,Maxthon 1.6.7,Firefox30、31,360极速浏览器7.5.3.308下测试正常
添加浮动按钮点击滚动到网页底部的纯JavaScript演示代码 IE9、11,Maxthon 1.6.7,Firefox30、31,360极速浏览器7.5.3.308下测试正常
|
27天前
|
机器学习/深度学习 JSON 算法
实例分割笔记(一): 使用YOLOv5-Seg对图像进行分割检测完整版(从自定义数据集到测试验证的完整流程)
本文详细介绍了使用YOLOv5-Seg模型进行图像分割的完整流程,包括图像分割的基础知识、YOLOv5-Seg模型的特点、环境搭建、数据集准备、模型训练、验证、测试以及评价指标。通过实例代码,指导读者从自定义数据集开始,直至模型的测试验证,适合深度学习领域的研究者和开发者参考。
247 2
实例分割笔记(一): 使用YOLOv5-Seg对图像进行分割检测完整版(从自定义数据集到测试验证的完整流程)
|
27天前
|
机器学习/深度学习 JSON 算法
语义分割笔记(二):DeepLab V3对图像进行分割(自定义数据集从零到一进行训练、验证和测试)
本文介绍了DeepLab V3在语义分割中的应用,包括数据集准备、模型训练、测试和评估,提供了代码和资源链接。
153 0
语义分割笔记(二):DeepLab V3对图像进行分割(自定义数据集从零到一进行训练、验证和测试)
|
27天前
|
机器学习/深度学习 算法 PyTorch
目标检测实战(五): 使用YOLOv5-7.0版本对图像进行目标检测完整版(从自定义数据集到测试验证的完整流程)
本文详细介绍了使用YOLOv5-7.0版本进行目标检测的完整流程,包括算法介绍、环境搭建、数据集准备、模型训练、验证、测试以及评价指标。YOLOv5以其高精度、快速度和模型小尺寸在计算机视觉领域受到广泛应用。
266 0
目标检测实战(五): 使用YOLOv5-7.0版本对图像进行目标检测完整版(从自定义数据集到测试验证的完整流程)
|
27天前
|
缓存 数据挖掘 测试技术
目标检测实战(三):YOLO-Nano训练、测试、验证详细步骤
本文介绍了YOLO-Nano在目标检测中的训练、测试及验证步骤。YOLO-Nano是一个轻量级目标检测模型,使用ShuffleNet-v2作为主干网络,结合FPN+PAN特征金字塔和NanoDet的检测头。文章详细说明了训练前的准备、源代码下载、数据集准备、参数调整、模型测试、FPS测试、VOC-map测试、模型训练、模型测试和验证等步骤,旨在帮助开发者高效实现目标检测任务。
39 0
目标检测实战(三):YOLO-Nano训练、测试、验证详细步骤
|
2月前
|
SQL JavaScript 前端开发
基于Python访问Hive的pytest测试代码实现
根据《用Java、Python来开发Hive应用》一文,建立了使用Python、来开发Hive应用的方法,产生的代码如下
68 6
基于Python访问Hive的pytest测试代码实现
|
1月前
|
Linux C语言 C++
vsCode远程执行c和c++代码并操控linux服务器完整教程
这篇文章提供了一个完整的教程,介绍如何在Visual Studio Code中配置和使用插件来远程执行C和C++代码,并操控Linux服务器,包括安装VSCode、安装插件、配置插件、配置编译工具、升级glibc和编写代码进行调试的步骤。
172 0
vsCode远程执行c和c++代码并操控linux服务器完整教程
|
2月前
|
Java C++
代码文件间重复性测试
本文介绍了如何使用代码相似性检测工具simian来找出代码文件中的重复行,并通过示例指令展示了如何将检测结果输出到指定的文本文件中。