行为检测代码(一):超详细介绍C3D架构训练+测试步骤

简介: 这篇文章详细介绍了C3D架构在行为检测领域的应用,包括训练和测试步骤,使用UCF101数据集进行演示。

C3D介绍

通过3D卷积操作核去提取视频数据的时间核空间特征。这些3D特征提取器在空间和时间两个维度上操作,因此可以捕捉视频流的运动信息。然后基于3D卷积提取器构造一个3D卷积神经网络,这个架构可以从连续视频帧中产生多通道的信息,然后在每一个通道都分离地进行卷积和下采样操作。最后将所有通道的信息组合起来得到最终的特征描述。C3D网络将完整的视频作为输入,不依赖于任何处理,可以轻松扩展到大数据集。可以应用于行为识别,场景识别,视频相似度分析等领域。具有通用、紧凑、简单、高效的特点。C3D的速度应该是在视频帧无重叠的情况下获得的,在NVIDIA 1080 的GPU上,可以达到600帧以上的速度。

在这里插入图片描述
由卷积、池化、全连接层组成。

github获取

https://github.com/Niki173/C3D

数据集下载

这里用的是UCF101数据集,共101类,里面全是avi视频,每个类别都有一个动作名称,也就是它的label。

数据预处理

将UCF101数据集通过代码里面的dataset.py划分为train、val、test三个文件夹,每个文件夹存放的都是由视频获取的图片,每两帧保存一张。具体细节如下:

目录
相关文章
|
3月前
|
机器学习/深度学习 人工智能 并行计算
AI部署架构:A100、H100、A800、H800、H20的差异以及如何选型?开发、测试、生产环境如何进行AI大模型部署架构?
AI部署架构:A100、H100、A800、H800、H20的差异以及如何选型?开发、测试、生产环境如何进行AI大模型部署架构?
AI部署架构:A100、H100、A800、H800、H20的差异以及如何选型?开发、测试、生产环境如何进行AI大模型部署架构?
|
3月前
|
存储 jenkins 测试技术
Apipost自动化测试:零代码!3步搞定!
传统手动测试耗时低效且易遗漏,全球Top 10科技公司中90%已转向自动化测试。Apipost无需代码,三步实现全流程自动化测试,支持小白快速上手。功能涵盖接口测试、性能压测与数据驱动,并提供动态数据提取、CICD集成等优势,助力高效测试全场景覆盖。通过拖拽编排、一键CLI生成,无缝对接Jenkins、GitHub Actions,提升测试效率与准确性。
129 11
|
3月前
|
人工智能 自然语言处理 测试技术
自然语言生成代码一键搞定!Codex CLI:OpenAI开源终端AI编程助手,代码重构+测试全自动
Codex CLI是OpenAI推出的轻量级AI编程智能体,基于自然语言指令帮助开发者高效生成代码、执行文件操作和进行版本控制,支持代码生成、重构、测试及数据库迁移等功能。
339 0
自然语言生成代码一键搞定!Codex CLI:OpenAI开源终端AI编程助手,代码重构+测试全自动
|
4月前
|
并行计算 PyTorch 算法框架/工具
融合AMD与NVIDIA GPU集群的MLOps:异构计算环境中的分布式训练架构实践
本文探讨了如何通过技术手段混合使用AMD与NVIDIA GPU集群以支持PyTorch分布式训练。面对CUDA与ROCm框架互操作性不足的问题,文章提出利用UCC和UCX等统一通信框架实现高效数据传输,并在异构Kubernetes集群中部署任务。通过解决轻度与强度异构环境下的挑战,如计算能力不平衡、内存容量差异及通信性能优化,文章展示了如何无需重构代码即可充分利用异构硬件资源。尽管存在RDMA验证不足、通信性能次优等局限性,但该方案为最大化GPU资源利用率、降低供应商锁定提供了可行路径。源代码已公开,供读者参考实践。
275 3
融合AMD与NVIDIA GPU集群的MLOps:异构计算环境中的分布式训练架构实践
|
5月前
|
人工智能 自然语言处理 测试技术
Potpie.ai:比Copilot更狠!这个AI直接接管项目代码,自动Debug+测试+开发全搞定
Potpie.ai 是一个基于 AI 技术的开源平台,能够为代码库创建定制化的工程代理,自动化代码分析、测试和开发任务。
437 19
Potpie.ai:比Copilot更狠!这个AI直接接管项目代码,自动Debug+测试+开发全搞定
|
4月前
|
关系型数据库 测试技术 分布式数据库
刷新世界纪录!阿里云PolarDB凭借创新的「三层解耦」架构刷新TPC-C基准测试世界纪录
刷新世界纪录!阿里云PolarDB凭借创新的「三层解耦」架构刷新TPC-C基准测试世界纪录
|
6月前
|
前端开发 JavaScript 测试技术
使用ChatGPT生成登录产品代码的测试用例和测试脚本
使用ChatGPT生成登录产品代码的测试用例和测试脚本
172 35
|
6月前
|
机器学习/深度学习 人工智能 NoSQL
记忆层增强的 Transformer 架构:通过可训练键值存储提升 LLM 性能的创新方法
Meta研究团队开发的记忆层技术通过替换Transformer中的前馈网络(FFN),显著提升了大语言模型的性能。记忆层使用可训练的固定键值对,规模达百万级别,仅计算最相似的前k个键值,优化了计算效率。实验显示,记忆层使模型在事实准确性上提升超100%,且在代码生成和通用知识领域表现优异,媲美4倍计算资源训练的传统模型。这一创新对下一代AI架构的发展具有重要意义。
251 11
记忆层增强的 Transformer 架构:通过可训练键值存储提升 LLM 性能的创新方法
|
6月前
|
JavaScript 前端开发 Java
使用ChatGPT生成关于登录产品代码的单元测试代码
使用ChatGPT生成关于登录产品代码的单元测试代码
96 16
|
7月前
|
算法 Java 测试技术
使用 BenchmarkDotNet 对 .NET 代码进行性能基准测试
使用 BenchmarkDotNet 对 .NET 代码进行性能基准测试
161 13