开发者社区> 贾志刚> 正文
阿里云
为了无法计算的价值
打开APP
阿里云APP内打开

图像各向异性滤波

简介: 图像各向异性滤波 各向异性概念 各向异性(英文名称:anisotropy)是指材料在各方向的力学和物理性能呈现差异的特性。晶体的各向异性即沿晶格的不同方向,原子排列的周期性和疏密程度不尽相同,由此导致晶体在不同方向的物理化学特性也不同,这就是晶体的各向异性。
+关注继续查看

图像各向异性滤波

各向异性概念
各向异性(英文名称:anisotropy)是指材料在各方向的力学和物理性能呈现差异的特性。晶体的各向异性即沿晶格的不同方向,原子排列的周期性和疏密程度不尽相同,由此导致晶体在不同方向的物理化学特性也不同,这就是晶体的各向异性。亦称“非均质性”。物体的全部或部分物理、化学等性质随方向的不同而各自表现出一定的差异的特性。即在不同的方向所测得的性能数值不同。对图像来说各向异性就是在每个像素点周围四个方向上梯度变化都不一样,滤波的时候我们要考虑图像的各向异性对图像的影响,而各向同性显然是说各个方向的值都一致,常见的图像均值或者高斯均值滤波可以看成是各向同性滤波。

各向异性滤波
是将图像看成物理学的力场或者热流场,图像像素总是向跟他的值相异不是很大的地方流动或者运动,这样那些差异大的地方(边缘)就得以保留,所以本质上各向异性滤波是图像边缘保留滤波器(EPF)。它在各个方向的扩散可以表示如下如下公式:
这里写图片描述
这里写图片描述

代码实现

#include <opencv2/opencv.hpp>
#include <iostream>

using namespace cv;
using namespace std;
float k = 15;
float lambda = 0.25;
int N = 20;

void anisotropy_demo(Mat &image, Mat &result);
int main(int argc, char** argv) {
    Mat src = imread("D:/vcprojects/images/example.png");
    if (src.empty()) {
        printf("could not load image...\n");
        return -1;
    }
    namedWindow("input image", CV_WINDOW_AUTOSIZE);
    imshow("input image", src);
    vector<Mat> mv;
    vector<Mat> results;
    split(src, mv);
    for (int n = 0; n < mv.size(); n++) {
        Mat m = Mat::zeros(src.size(), CV_32FC1);
        mv[n].convertTo(m, CV_32FC1);
        results.push_back(m);
    }

    int w = src.cols;
    int h = src.rows;
    Mat copy = Mat::zeros(src.size(), CV_32FC1);
    for (int i = 0; i < N; i++) {
        anisotropy_demo(results[0], copy);
        copy.copyTo(results[0]);

        anisotropy_demo(results[1], copy);
        copy.copyTo(results[1]);

        anisotropy_demo(results[2], copy);
        copy.copyTo(results[2]);

    }
    Mat output;
    normalize(results[0], results[0], 0, 255, NORM_MINMAX);
    normalize(results[1], results[1], 0, 255, NORM_MINMAX);
    normalize(results[2], results[2], 0, 255, NORM_MINMAX);

    results[0].convertTo(mv[0], CV_8UC1);
    results[1].convertTo(mv[1], CV_8UC1);
    results[2].convertTo(mv[2], CV_8UC1);

    Mat dst;
    merge(mv, dst);

    imshow("result", dst);
    imwrite("D:/result.png", dst);
    waitKey(0);
    return 0;
}

void anisotropy_demo(Mat &image, Mat &result) {
    int width = image.cols;
    int height = image.rows;

    // 四邻域梯度
    float n = 0, s = 0, e = 0, w = 0; 
    // 四邻域系数
    float nc = 0, sc = 0, ec = 0, wc = 0; 
    float k2 = k*k;
    for (int row = 1; row < height -1; row++) {
        for (int col = 1; col < width -1; col++) {
            // gradient
            n = image.at<float>(row - 1, col) - image.at<float>(row, col);
            s = image.at<float>(row + 1, col) - image.at<float>(row, col);
            e = image.at<float>(row, col - 1) - image.at<float>(row, col);
            w = image.at<float>(row, col + 1) - image.at<float>(row, col);
            nc = exp(-n*n / k2);
            sc = exp(-s*s / k2);
            ec = exp(-e*e / k2);
            wc = exp(-w*w / k2);
            result.at<float>(row, col) = image.at<float>(row, col) + lambda*(n*nc + s*sc + e*ec + w*wc);
        }
    }
}

运行效果
这里写图片描述

好久没发啦,最近比较忙,但我会一直坚持发!

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
【图像分类】Vision Transformer理论解读+实践测试
Vision Transformer是2021年谷歌在ICLR上提出的算法,算法原理并不复杂,但是其价值是开创性的。它首次将NLP领域火热的Transformer模型架构移植到了CV领域,打破了这两个领域壁垒,并取得不错的成效。论文名称: An Image Is Worth 16x16 Words: Transformers For Image Recognition At Scale。
42 0
Task04 图像滤波
Task04 图像滤波
47 0
卡尔曼滤波系列1——卡尔曼滤波
卡尔曼滤波系列1——卡尔曼滤波
49 0
SVG图像——为 PPT 增添视觉趣味/03/O365智能系列(一)
SVG图像——为 PPT 增添视觉趣味/03/O365智能系列(一)
547 0
图像、帧、片、NALU
图像、帧、片、NALU 是学习 H.264 的人常常感到困惑的一些概念,我在这里对自己的理解做一些阐述,欢迎大家讨论:H.264 是一次概念的革新,它打破常规,完全没有 I 帧、P帧、B 帧的概念,也没有 IDR 帧的概念。
844 0
CT图像
CT图像是由一定数目由黑到白不同灰度的象素按矩阵排列所构成。这些象素反映的是相应体素的X线吸收系数。不同CT装置所得图像的象素大小及数目不同。大小可以是1.0×1.0mm,0.5×0.5mm不等;数目可以是256×256,即65536个,或512×512,即262144个不等。
698 0
+关注
贾志刚
2004毕业于山东大学齐鲁软件学院,软件工程专业。主要专注于图像处理算法学习与研究,计算机视觉技术开发应用,深度学习在计算机视觉领域应用。两本书籍《Java数字图像处理-编程技巧与应用实践》、《OpenCV On Android编程实践》作者
252
文章
0
问答
文章排行榜
最热
最新
相关电子书
更多
低代码开发师(初级)实战教程
立即下载
阿里巴巴DevOps 最佳实践手册
立即下载
冬季实战营第三期:MySQL数据库进阶实战
立即下载