使用Spark DataFrame针对数据进行SQL处理

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
简介:

简介

    DataFrame让Spark具备了处理大规模结构化数据的能力,在比原有的RDD转化方式易用的前提下,计算性能更还快了两倍。这一个小小的API,隐含着Spark希望大一统「大数据江湖」的野心和决心。DataFrame像是一条联结所有主流数据源并自动转化为可并行处理格式的水渠,通过它Spark能取悦大数据生态链上的所有玩家,无论是善用R的数据科学家,惯用SQL的商业分析师,还是在意效率和实时性的统计工程师。

例子说明

    提供了将结构化数据为DataFrame并注册为表,使用SQL查询的例子

    提供了从RMDB中读取数据为DataFrame的例子

    提供了将数据写入到RMDB中的例子

代码样例

import scala.collection.mutable.ArrayBuffer
import scala.io.Source
import java.io.PrintWriter
import util.control.Breaks._
import org.apache.spark.SparkContext
import org.apache.spark.sql.SQLContext
import java.sql.DriverManager
import java.sql.PreparedStatement
import java.sql.Connection
import org.apache.spark.sql.types.IntegerType
import org.apache.spark.sql.types.StructType
import org.apache.spark.sql.types.StructField
import org.apache.spark.sql.types.StringType
import org.apache.spark.sql.Row
import java.util.Properties
import org.apache.spark.sql.SaveMode

object SimpleDemo extends App {
  val sc = new SparkContext("local[*]", "test")
  val sqlc = new SQLContext(sc)
  val driverUrl = "jdbc:mysql://ip:3306/ding?user=root&password=root&zeroDateTimeBehavior=convertToNull&characterEncoding=utf-8"
  val tableName = "tbaclusterresult"

  //把数据转化为DataFrame,并注册为一个表
  val df = sqlc.read.json("G:/data/json.txt")
  df.registerTempTable("user")
  val res = sqlc.sql("select * from user")
  println(res.count() + "---------------------------")
  res.collect().map { row =>
    {
      println(row.toString())
    }
  }

  //从MYSQL读取数据
  val jdbcDF = sqlc.read
    .options(Map("url" -> driverUrl,
      //      "user" -> "root",
      //      "password" -> "root",
      "dbtable" -> tableName))
    .format("jdbc")
    .load()
  println(jdbcDF.count() + "---------------------------")
  jdbcDF.collect().map { row =>
    {
      println(row.toString())
    }
  }

  //插入数据至MYSQL
  val schema = StructType(
    StructField("name", StringType) ::
      StructField("age", IntegerType)
      :: Nil)

  val data1 = sc.parallelize(List(("blog1", 301), ("iteblog", 29),
    ("com", 40), ("bt", 33), ("www", 23))).
    map(item => Row.apply(item._1, item._2))
  import sqlc.implicits._
  val df1 = sqlc.createDataFrame(data1, schema)
  //  df1.write.jdbc(driverUrl, "sparktomysql", new Properties)
  df1.write.mode(SaveMode.Overwrite).jdbc(driverUrl, "testtable", new Properties)

  //DataFrame类中还有insertIntoJDBC方法,调用该函数必须保证表事先存在,它只用于插入数据,函数原型如下:
  //def insertIntoJDBC(url: String, table: String, overwrite: Boolean): Unit

  //插入数据到MYSQL
  val data = sc.parallelize(List(("www", 10), ("iteblog", 20), ("com", 30)))
  data.foreachPartition(myFun)

  case class Blog(name: String, count: Int)

  def myFun(iterator: Iterator[(String, Int)]): Unit = {
    var conn: Connection = null
    var ps: PreparedStatement = null
    val sql = "insert into blog(name, count) values (?, ?)"
    try {
      conn = DriverManager.getConnection(driverUrl, "root", "root")
      iterator.foreach(data => {
        ps = conn.prepareStatement(sql)
        ps.setString(1, data._1)
        ps.setInt(2, data._2)
        ps.executeUpdate()
      })
    } catch {
      case e: Exception => e.printStackTrace()
    } finally {
      if (ps != null) {
        ps.close()
      }
      if (conn != null) {
        conn.close()
      }
    }
  }
}

将数据写入ORACLE示例

val driverUrl: String = "jdbc:oracle:thin:@IP:1521/sda"
    jdbcDF.foreachPartition(insertDataFunc)
    def insertDataFunc(iterator: Iterator[Row]): Unit = {
      var conn: Connection = null
      var psmt: PreparedStatement = null
      val sql = "INSERT INTO TEST2(ID,NAME,NUM) VALUES ( ?,?, ?)"
      var i = 0
      var num = 0
      try {
        conn = DriverManager.getConnection(driverUrl, "user", "password")
        conn.setAutoCommit(false);
        psmt = conn.prepareStatement(sql)
        iterator.foreach { row =>
          {
            i += 1
            if (i > batchSize) {
              i = 0
              psmt.executeBatch();
              num += psmt.getUpdateCount();
              psmt.clearBatch();
            }
            psmt.setObject(1, row(0))
            psmt.setObject(2, row(1))
            psmt.setObject(3, row(2))
            psmt.addBatch();
          }
        }
        psmt.executeBatch();
        num += psmt.getUpdateCount();
        conn.commit();
        println(num+"..........................")
      } catch {
        case e: Exception => {
          e.printStackTrace()
          try {
            conn.rollback();
          } catch {
            case e: Exception => e.printStackTrace();
          }
        }
      } finally {
        if (psmt != null) {
          psmt.close()
        }
        if (conn != null) {
          conn.close()
        }
      }
    }
相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
1月前
|
SQL 存储 缓存
SQL Server 数据太多如何优化
11种优化方案供你参考,优化 SQL Server 数据库性能得从多个方面着手,包括硬件配置、数据库结构、查询优化、索引管理、分区分表、并行处理等。通过合理的索引、查询优化、数据分区等技术,可以在数据量增大时保持较好的性能。同时,定期进行数据库维护和清理,保证数据库高效运行。
|
2月前
|
SQL 移动开发 Oracle
SQL语句实现查询连续六天数据的方法与技巧
在数据库查询中,有时需要筛选出符合特定时间连续性条件的数据记录
|
1月前
|
SQL JSON 分布式计算
【赵渝强老师】Spark SQL的数据模型:DataFrame
本文介绍了在Spark SQL中创建DataFrame的三种方法。首先,通过定义case class来创建表结构,然后将CSV文件读入RDD并关联Schema生成DataFrame。其次,使用StructType定义表结构,同样将CSV文件读入RDD并转换为Row对象后创建DataFrame。最后,直接加载带有格式的数据文件(如JSON),通过读取文件内容直接创建DataFrame。每种方法都包含详细的代码示例和解释。
|
2月前
|
SQL 存储 关系型数据库
添加数据到数据库的SQL语句详解与实践技巧
在数据库管理中,添加数据是一个基本操作,它涉及到向表中插入新的记录
|
2月前
|
SQL 数据挖掘 数据库
SQL查询每秒的数据:技巧、方法与性能优化
id="">SQL查询功能详解 SQL(Structured Query Language,结构化查询语言)是一种专门用于与数据库进行沟通和操作的语言
|
2月前
|
SQL 分布式计算 大数据
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(一)
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(一)
73 0
|
2月前
|
SQL 分布式计算 算法
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(二)
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(二)
88 0
|
1月前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
139 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
2月前
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
72 0