爬虫性能相关

简介: 这里我们通过请求网页例子来一步步理解爬虫性能 当我们有一个列表存放了一些url需要我们获取相关数据,我们首先想到的是循环 简单的循环串行 这一种方法相对来说是最慢的,因为一个一个循环,耗时是最长的,是所有的时间总和代码如下: import requests url_list = [ 'http://www.

这里我们通过请求网页例子来一步步理解爬虫性能

当我们有一个列表存放了一些url需要我们获取相关数据,我们首先想到的是循环

简单的循环串行

这一种方法相对来说是最慢的,因为一个一个循环,耗时是最长的,是所有的时间总和
代码如下:

import requests

url_list = [
    'http://www.baidu.com',
    'http://www.pythonsite.com',
    'http://www.cnblogs.com/'
]

for url in url_list:
    result = requests.get(url)
    print(result.text)

通过线程池

通过线程池的方式访问,这样整体的耗时是所有连接里耗时最久的那个,相对循环来说快了很多

import requests
from concurrent.futures import ThreadPoolExecutor

def fetch_request(url):
    result = requests.get(url)
    print(result.text)

url_list = [
    'http://www.baidu.com',
    'http://www.bing.com',
    'http://www.cnblogs.com/'
]
pool = ThreadPoolExecutor(10)

for url in url_list:
    #去线程池中获取一个线程,线程去执行fetch_request方法
    pool.submit(fetch_request,url)

pool.shutdown(True)

线程池+回调函数

这里定义了一个回调函数callback

from concurrent.futures import ThreadPoolExecutor
import requests


def fetch_async(url):
    response = requests.get(url)

    return response


def callback(future):
    print(future.result().text)


url_list = [
    'http://www.baidu.com',
    'http://www.bing.com',
    'http://www.cnblogs.com/'
]

pool = ThreadPoolExecutor(5)

for url in url_list:
    v = pool.submit(fetch_async,url)
    #这里调用回调函数
    v.add_done_callback(callback)

pool.shutdown()

通过进程池

通过进程池的方式访问,同样的也是取决于耗时最长的,但是相对于线程来说,进程需要耗费更多的资源,同时这里是访问url时IO操作,所以这里线程池比进程池更好

import requests
from concurrent.futures import ProcessPoolExecutor

def fetch_request(url):
    result = requests.get(url)
    print(result.text)

url_list = [
    'http://www.baidu.com',
    'http://www.bing.com',
    'http://www.cnblogs.com/'
]
pool = ProcessPoolExecutor(10)

for url in url_list:
    #去进程池中获取一个线程,子进程程去执行fetch_request方法
    pool.submit(fetch_request,url)

pool.shutdown(True)

进程池+回调函数

这种方式和线程+回调函数的效果是一样的,相对来说开进程比开线程浪费资源

from concurrent.futures import ProcessPoolExecutor
import requests


def fetch_async(url):
    response = requests.get(url)

    return response


def callback(future):
    print(future.result().text)


url_list = [
    'http://www.baidu.com',
    'http://www.bing.com',
    'http://www.cnblogs.com/'
]

pool = ProcessPoolExecutor(5)

for url in url_list:
    v = pool.submit(fetch_async, url)
    # 这里调用回调函数
    v.add_done_callback(callback)

pool.shutdown()

主流的单线程实现并发的几种方式

  1. asyncio
  2. gevent
  3. Twisted
  4. Tornado

下面分别是这四种代码的实现例子:

asyncio例子1:

import asyncio


@asyncio.coroutine #通过这个装饰器装饰
def func1():
    print('before...func1......')
    # 这里必须用yield from,并且这里必须是asyncio.sleep不能是time.sleep
    yield from asyncio.sleep(2)
    print('end...func1......')


tasks = [func1(), func1()]

loop = asyncio.get_event_loop()
loop.run_until_complete(asyncio.gather(*tasks))
loop.close()
View Code

上述的效果是同时会打印两个before的内容,然后等待2秒打印end内容
这里asyncio并没有提供我们发送http请求的方法,但是我们可以在yield from这里构造http请求的方法。

asyncio例子2:

import asyncio


@asyncio.coroutine
def fetch_async(host, url='/'):
    print("----",host, url)
    reader, writer = yield from asyncio.open_connection(host, 80)

    #构造请求头内容
    request_header_content = """GET %s HTTP/1.0\r\nHost: %s\r\n\r\n""" % (url, host,)
    request_header_content = bytes(request_header_content, encoding='utf-8')
    #发送请求
    writer.write(request_header_content)
    yield from writer.drain()
    text = yield from reader.read()
    print(host, url, text)
    writer.close()

tasks = [
    fetch_async('www.cnblogs.com', '/zhaof/'),
    fetch_async('dig.chouti.com', '/pic/show?nid=4073644713430508&lid=10273091')
]

loop = asyncio.get_event_loop()
results = loop.run_until_complete(asyncio.gather(*tasks))
loop.close()
View Code

asyncio + aiohttp 代码例子:

import aiohttp
import asyncio


@asyncio.coroutine
def fetch_async(url):
    print(url)
    response = yield from aiohttp.request('GET', url)
    print(url, response)
    response.close()


tasks = [fetch_async('http://baidu.com/'), fetch_async('http://www.chouti.com/')]

event_loop = asyncio.get_event_loop()
results = event_loop.run_until_complete(asyncio.gather(*tasks))
event_loop.close()
View Code

asyncio+requests代码例子

import asyncio
import requests


@asyncio.coroutine
def fetch_async(func, *args):
    loop = asyncio.get_event_loop()
    future = loop.run_in_executor(None, func, *args)
    response = yield from future
    print(response.url, response.content)


tasks = [
    fetch_async(requests.get, 'http://www.cnblogs.com/wupeiqi/'),
    fetch_async(requests.get, 'http://dig.chouti.com/pic/show?nid=4073644713430508&lid=10273091')
]

loop = asyncio.get_event_loop()
results = loop.run_until_complete(asyncio.gather(*tasks))
loop.close()
View Code

gevent+requests代码例子

import gevent

import requests
from gevent import monkey

monkey.patch_all()


def fetch_async(method, url, req_kwargs):
    print(method, url, req_kwargs)
    response = requests.request(method=method, url=url, **req_kwargs)
    print(response.url, response.content)

# ##### 发送请求 #####
gevent.joinall([
    gevent.spawn(fetch_async, method='get', url='https://www.python.org/', req_kwargs={}),
    gevent.spawn(fetch_async, method='get', url='https://www.yahoo.com/', req_kwargs={}),
    gevent.spawn(fetch_async, method='get', url='https://github.com/', req_kwargs={}),
])

# ##### 发送请求(协程池控制最大协程数量) #####
# from gevent.pool import Pool
# pool = Pool(None)
# gevent.joinall([
#     pool.spawn(fetch_async, method='get', url='https://www.python.org/', req_kwargs={}),
#     pool.spawn(fetch_async, method='get', url='https://www.yahoo.com/', req_kwargs={}),
#     pool.spawn(fetch_async, method='get', url='https://www.github.com/', req_kwargs={}),
# ])
View Code

grequests代码例子
这个是讲requests+gevent进行了封装

import grequests


request_list = [
    grequests.get('http://httpbin.org/delay/1', timeout=0.001),
    grequests.get('http://fakedomain/'),
    grequests.get('http://httpbin.org/status/500')
]


# ##### 执行并获取响应列表 #####
# response_list = grequests.map(request_list)
# print(response_list)


# ##### 执行并获取响应列表(处理异常) #####
# def exception_handler(request, exception):
# print(request,exception)
#     print("Request failed")

# response_list = grequests.map(request_list, exception_handler=exception_handler)
# print(response_list)
View Code

twisted代码例子

#getPage相当于requets模块,defer特殊的返回值,rector是做事件循环
from twisted.web.client import getPage, defer
from twisted.internet import reactor

def all_done(arg):
    reactor.stop()

def callback(contents):
    print(contents)

deferred_list = []

url_list = ['http://www.bing.com', 'http://www.baidu.com', ]
for url in url_list:
    deferred = getPage(bytes(url, encoding='utf8'))
    deferred.addCallback(callback)
    deferred_list.append(deferred)
#这里就是进就行一种检测,判断所有的请求知否执行完毕
dlist = defer.DeferredList(deferred_list)
dlist.addBoth(all_done)

reactor.run()
View Code

tornado代码例子

from tornado.httpclient import AsyncHTTPClient
from tornado.httpclient import HTTPRequest
from tornado import ioloop


def handle_response(response):
    """
    处理返回值内容(需要维护计数器,来停止IO循环),调用 ioloop.IOLoop.current().stop()
    :param response: 
    :return: 
    """
    if response.error:
        print("Error:", response.error)
    else:
        print(response.body)


def func():
    url_list = [
        'http://www.baidu.com',
        'http://www.bing.com',
    ]
    for url in url_list:
        print(url)
        http_client = AsyncHTTPClient()
        http_client.fetch(HTTPRequest(url), handle_response)


ioloop.IOLoop.current().add_callback(func)
ioloop.IOLoop.current().start()
View Code

 

所有的努力都值得期许,每一份梦想都应该灌溉!
目录
相关文章
|
3月前
|
数据采集
Haskell爬虫:连接管理与HTTP请求性能
Haskell爬虫:连接管理与HTTP请求性能
|
2月前
|
数据采集 存储 NoSQL
提高爬虫性能的 5 个关键技巧:从并发到异步执行
本文介绍了提高网络爬虫性能的五个关键技巧:并发请求、异步执行、使用代理IP、限制请求频率与休眠时间、优化数据提取与存储。结合拼多多的实际案例,展示了如何通过这些技术优化爬虫效率,确保数据采集的高效性和稳定性。
154 0
|
数据采集 存储 编解码
Python爬虫系列4-优化普通数据下载性能的速度
很多人在学习爬虫的时候,总是参照着书本中的内容或者是从网上学习的案例,但是那些案例你会,别人也会 ,如此怎么能提高我们的市场竞争力呢?Tony老师不服,于是,此篇文章顺利诞生;也是想让大家在学习的过程中真正的 **学以致用** 。
Python爬虫系列4-优化普通数据下载性能的速度
|
25天前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
73 6
|
4月前
|
机器学习/深度学习 数据采集 数据可视化
基于爬虫和机器学习的招聘数据分析与可视化系统,python django框架,前端bootstrap,机器学习有八种带有可视化大屏和后台
本文介绍了一个基于Python Django框架和Bootstrap前端技术,集成了机器学习算法和数据可视化的招聘数据分析与可视化系统,该系统通过爬虫技术获取职位信息,并使用多种机器学习模型进行薪资预测、职位匹配和趋势分析,提供了一个直观的可视化大屏和后台管理系统,以优化招聘策略并提升决策质量。
192 4
|
4月前
|
数据采集 存储 搜索推荐
打造个性化网页爬虫:从零开始的Python教程
【8月更文挑战第31天】在数字信息的海洋中,网页爬虫是一艘能够自动搜集网络数据的神奇船只。本文将引导你启航,用Python语言建造属于你自己的网页爬虫。我们将一起探索如何从无到有,一步步构建一个能够抓取、解析并存储网页数据的基础爬虫。文章不仅分享代码,更带你理解背后的逻辑,让你能在遇到问题时自行找到解决方案。无论你是编程新手还是有一定基础的开发者,这篇文章都会为你打开一扇通往数据世界的新窗。
|
5月前
|
数据采集 存储 JSON
从零到一构建网络爬虫帝国:HTTP协议+Python requests库深度解析
【7月更文挑战第31天】在网络数据的海洋中,使用Python的`requests`库构建网络爬虫就像探索未知的航船。HTTP协议指导爬虫与服务器交流,收集信息。HTTP请求包括请求行、头和体,响应则含状态行、头和体。`requests`简化了发送各种HTTP请求的过程。
86 4
|
2月前
|
数据采集 存储 数据挖掘
深入探索 Python 爬虫:高级技术与实战应用
本文介绍了Python爬虫的高级技术,涵盖并发处理、反爬虫策略(如验证码识别与模拟登录)及数据存储与处理方法。通过asyncio库实现异步爬虫,提升效率;利用tesseract和requests库应对反爬措施;借助SQLAlchemy和pandas进行数据存储与分析。实战部分展示了如何爬取电商网站的商品信息及新闻网站的文章内容。提醒读者在实际应用中需遵守法律法规。
193 66
|
23天前
|
数据采集 Web App开发 JavaScript
爬虫策略规避:Python爬虫的浏览器自动化
爬虫策略规避:Python爬虫的浏览器自动化
|
26天前
|
数据采集 前端开发 中间件
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第26天】Python是一种强大的编程语言,在数据抓取和网络爬虫领域应用广泛。Scrapy作为高效灵活的爬虫框架,为开发者提供了强大的工具集。本文通过实战案例,详细解析Scrapy框架的应用与技巧,并附上示例代码。文章介绍了Scrapy的基本概念、创建项目、编写简单爬虫、高级特性和技巧等内容。
53 4