tf.minimize

简介:
minimize(self, loss, global_step=None, var_list=None, gate_gradients=1, aggregation_method=None, colocate_gradients_with_ops=False, name=None, grad_loss=None)
Add operations to minimize `loss` by updating `var_list`.
This method simply combines calls `compute_gradients()` and
`apply_gradients()`. If you want to process the gradient before applying
them call `compute_gradients()` and `apply_gradients()` explicitly instead
of using this function.
Args:
loss: A `Tensor` containing the value to minimize.
global_step: Optional `Variable` to increment by one after the
variables have been updated.
var_list: Optional list or tuple of `Variable` objects to update to
minimize `loss`. Defaults to the list of variables collected in
the graph under the key `GraphKeys.TRAINABLE_VARIABLES`.
gate_gradients: How to gate the computation of gradients. Can be
`GATE_NONE`, `GATE_OP`, or `GATE_GRAPH`.
aggregation_method: Specifies the method used to combine gradient terms.
Valid values are defined in the class `AggregationMethod`.
colocate_gradients_with_ops: If True, try colocating gradients with
the corresponding op.
name: Optional name for the returned operation.
grad_loss: Optional. A `Tensor` holding the gradient computed for `loss`.
Returns:
An Operation that updates the variables in `var_list`. If `global_step`
was not `None`, that operation also increments `global_step`.
目录
相关文章
|
2月前
|
缓存 TensorFlow 算法框架/工具
TensorFlow学习笔记(一): tf.Variable() 和tf.get_variable()详解
这篇文章详细介绍了TensorFlow中`tf.Variable()`和`tf.get_variable()`的使用方法、参数含义以及它们之间的区别。
79 0
|
4月前
|
机器学习/深度学习 Python
tf.keras.layers.LSTM/tf.keras.layers.LSTMCell
【8月更文挑战第20天】tf.keras.layers.LSTM/tf.keras.layers.LSTMCell。
38 1
|
4月前
tf.keras.layers.Dense
【8月更文挑战第20天】tf.keras.layers.Dense。
64 2
|
4月前
|
算法框架/工具 数据格式
tf.keras.layers.Conv2D
【8月更文挑战第20天】tf.keras.layers.Conv2D。
41 2
|
4月前
tf.keras.layers.MaxPooling2D/AveragePooling2D
【8月更文挑战第19天】tf.keras.layers.MaxPooling2D/AveragePooling2D。
46 0
|
4月前
tf.zeros(), tf.zeros_like(), tf.ones(),tf.ones_like()
【8月更文挑战第11天】tf.zeros(), tf.zeros_like(), tf.ones(),tf.ones_like()。
40 5
|
4月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
【Tensorflow+Keras】tf.keras.layers.Bidirectional()的解析与使用
本文解析了TensorFlow和Keras中的`tf.keras.layers.Bidirectional()`层,它用于实现双向RNN(如LSTM、GRU)的神经网络结构。文章详细介绍了该层的参数配置,并通过实例演示了如何构建含有双向LSTM层的模型,以及如何使用IMDB数据集进行模型训练和评估。
87 8
|
机器学习/深度学习 PyTorch 算法框架/工具
|
定位技术 内存技术
TF 卡是什么
TF 卡是什么
487 0