《机器学习实战》基于朴素贝叶斯分类算法构建文本分类器的Python实现

简介: ============================================================================================ 《机器学习实战》系列博客是博主阅读《机器学习实战》这本书的笔记,包含对其中算法的理解和算法的Pyt...
============================================================================================
《机器学习实战》系列博客是博主阅读《机器学习实战》这本书的笔记,包含对其中算法的理解和算法的Python代码实现

另外博主这里有机器学习实战这本书的所有算法源代码和算法所用到的源文件,有需要的留言
============================================================================================
附:之所以成为朴素贝叶斯是因为其假设了各个特征之间是独立的


关于朴素贝叶斯分类算法的理解请参考:http://blog.csdn.net/gamer_gyt/article/details/47205371

Python代码实现:

#encoding:utf-8

from numpy import *

#词表到向量的转换函数
def loadDataSet():
    postingList = [['my','dog','has','flea','problems','help','please'],
                   ['maybe','not','take','him','to','dog','park','stupid'],
                   ['my','dalmation','is','so','cute','I','love','him'],
                   ['stop','posting','stupid','worthless','garbage'],
                   ['mr','licks','ate','my','steak','how','to','stop','him'],
                   ['quit','buying','worthless','dog','food','stupid']]
    classVec = [0,1,0,1,0,1]      #1,侮辱  0,正常
    return postingList,classVec

def createVocabList(dataSet):
    vocabSet = set([])  #调用set方法,创建一个空集
    for document in dataSet:
        vocabSet = vocabSet | set(document)     #创建两个集合的并集
    return list(vocabSet)
'''
def setOfWords2Vec(vocabList,inputSet):
    returnVec = [0]*len(vocabList)   #创建一个所含元素都为0的向量
    for word in inputSet:
        if word in vocabList:
            returnVec[vocabList.index(word)] = 1
        else:
            print "the word:%s is not in my Vocabulary" % word
    return returnVec
'''

def bagOfWords2VecMN(vocabList,inputSet):
    returnVec = [0]*len(vocabList)   #创建一个所含元素都为0的向量
    for word in inputSet:
        if word in vocabList:
            returnVec[vocabList.index(word)] += 1
    return returnVec


#朴素贝叶斯分类器训练集
def trainNB0(trainMatrix,trainCategory):  #传入参数为文档矩阵,每篇文档类别标签所构成的向量
    numTrainDocs = len(trainMatrix)      #文档矩阵的长度
    numWords = len(trainMatrix[0])       #第一个文档的单词个数
    pAbusive = sum(trainCategory)/float(numTrainDocs)  #任意文档属于侮辱性文档概率
    #p0Num = zeros(numWords);p1Num = zeros(numWords)        #初始化两个矩阵,长度为numWords,内容值为0
    p0Num = ones(numWords);p1Num = ones(numWords)        #初始化两个矩阵,长度为numWords,内容值为1
    #p0Denom = 0.0;p1Denom = 0.0                         #初始化概率
    p0Denom = 2.0;p1Denom = 2.0 
    for i in range(numTrainDocs):
        if trainCategory[i]==1:
            p1Num +=trainMatrix[i]
            p1Denom += sum(trainMatrix[i])
        else:
            p0Num +=trainMatrix[i]
            p0Denom += sum(trainMatrix[i])
    #p1Vect = p1Num/p1Denom #对每个元素做除法
    #p0Vect = p0Num/p0Denom
    p1Vect = log(p1Num/p1Denom)
    p0Vect = log(p0Num/p0Denom)
    return p0Vect,p1Vect,pAbusive

#朴素贝叶斯分类函数
def classifyNB(vec2Classify,p0Vec,p1Vec,pClass1):
    p1 = sum(vec2Classify * p1Vec) + log(pClass1)   #元素相乘
    p0 = sum(vec2Classify * p0Vec) + log(1.0 - pClass1)
    if p1>p0:
        return 1
    else:
        return 0

def testingNB():
    listOPosts,listClasses = loadDataSet()   #产生文档矩阵和对应的标签
    myVocabList = createVocabList(listOPosts) #创建并集
    trainMat = []   #创建一个空的列表
    for postinDoc in listOPosts:
        trainMat.append(setOfWords2Vec(myVocabList,postinDoc))  #使用词向量来填充trainMat列表
    p0V,p1V,pAb = trainNB0(array(trainMat),array(listClasses))  #训练函数
    testEntry = ['love','my','dalmation']   #测试文档列表
    thisDoc = array(setOfWords2Vec(myVocabList,testEntry)) #声明矩阵
    print testEntry,'classified as:',classifyNB(thisDoc,p0V,p1V,pAb)
    testEntry = ['stupid','garbage']
    thisDoc = array(setOfWords2Vec(myVocabList,testEntry))    #声明矩阵
    print testEntry,'classified as:',classifyNB(thisDoc,p0V,p1V,pAb)


调用方式:

进入该文件所在目录,输入python,执行

>>>import bayes

>>>bayes.testingNB()

相关文章
|
2月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据科学实战:从Pandas到机器学习
Python数据科学实战:从Pandas到机器学习
|
2月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
140 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
2月前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
72 2
|
2月前
|
机器学习/深度学习 数据采集 搜索推荐
利用Python和机器学习构建电影推荐系统
利用Python和机器学习构建电影推荐系统
147 1
|
2月前
|
机器学习/深度学习 算法 PyTorch
用Python实现简单机器学习模型:以鸢尾花数据集为例
用Python实现简单机器学习模型:以鸢尾花数据集为例
181 1
|
2月前
|
机器学习/深度学习 数据采集 算法
Python机器学习:Scikit-learn库的高效使用技巧
【10月更文挑战第28天】Scikit-learn 是 Python 中最受欢迎的机器学习库之一,以其简洁的 API、丰富的算法和良好的文档支持而受到开发者喜爱。本文介绍了 Scikit-learn 的高效使用技巧,包括数据预处理(如使用 Pipeline 和 ColumnTransformer)、模型选择与评估(如交叉验证和 GridSearchCV)以及模型持久化(如使用 joblib)。通过这些技巧,你可以在机器学习项目中事半功倍。
86 3
|
2月前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
机器学习基础:使用Python和Scikit-learn入门
40 1
|
2月前
|
机器学习/深度学习 数据可视化 数据处理
掌握Python数据科学基础——从数据处理到机器学习
掌握Python数据科学基础——从数据处理到机器学习
59 0
|
2月前
|
机器学习/深度学习 数据采集 人工智能
机器学习入门:Python与scikit-learn实战
机器学习入门:Python与scikit-learn实战
80 0
|
2月前
|
机器学习/深度学习 数据采集 数据挖掘
Python在数据科学中的应用:从数据处理到模型训练
Python在数据科学中的应用:从数据处理到模型训练