回归分析之Sklearn实现电力预测

本文涉及的产品
MSE Nacos/ZooKeeper 企业版试用,1600元额度,限量50份
云原生网关 MSE Higress,422元/月
注册配置 MSE Nacos/ZooKeeper,182元/月
简介: 标签(空格分隔): 回归分析 sklearn pandas 交叉验证 打开微信扫一扫,关注微信公众号【数据与算法联盟】 转载请注明出处:http://blog.csdn.net/gamer_gyt 博主微博:http://weibo.com/234654758 Github:https://github.com/thinkgamer 参考原文:http://www.cnblogs.com/pinard/p/6016029.html 这里进行了手动实现,增强记忆。

标签(空格分隔): 回归分析 sklearn pandas 交叉验证


这里写图片描述
打开微信扫一扫,关注微信公众号【数据与算法联盟】

转载请注明出处:http://blog.csdn.net/gamer_gyt
博主微博:http://weibo.com/234654758
Github:https://github.com/thinkgamer


参考原文:http://www.cnblogs.com/pinard/p/6016029.html
这里进行了手动实现,增强记忆。

1:数据集介绍

使用的数据是UCI大学公开的机器学习数据

数据的介绍在这: http://archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant

数据的下载地址在这:

里面是一个循环发电场的数据,共有9568个样本数据,每个数据有5列,分别是:AT(温度), V(压力), AP(湿度), RH(压强), PE(输出电力)。我们不用纠结于每项具体的意思。

我们的问题是得到一个线性的关系,对应PE是样本输出,而AT/V/AP/RH这4个是样本特征, 机器学习的目的就是得到一个线性回归模型,即:

PE=θ0+θ0AT+θ0V+θ0AP+θ0RH

而需要学习的,就是θ0,θ1,θ2,θ3,θ4这5个参数。


2:准备数据

下载源数据之后,解压会得到一个xlsx的文件,打开另存为csv文件,数据已经整理好,没有非法数据,但是数据并没有进行归一化,不过这里我们可以使用sklearn来帮我处理

sklearn的归一化处理参考:http://blog.csdn.net/gamer_gyt/article/details/77761884


3:使用pandas来进行数据的读取

import pandas as pd
# pandas 读取数据
data = pd.read_csv("Folds5x2_pp.csv")
data.head()

然后会看到如下结果,说明数据读取成功:

    AT  V   AP  RH  PE
0   8.34    40.77   1010.84 90.01   480.48
1   23.64   58.49   1011.40 74.20   445.75
2   29.74   56.90   1007.15 41.91   438.76
3   19.07   49.69   1007.22 76.79   453.09
4   11.80   40.66   1017.13 97.20   464.43

4:准备运行算法的数据

X = data[["AT","V","AP","RH"]]
print X.shape
y = data[["PE"]]
print y.shape
(9568, 4)
(9568, 1)

说明有9658条数据,其中”AT”,”V”,”AP”,”RH” 四列作为样本特征,”PE”列作为样本输出。


5:划分训练集和测试集

from sklearn.cross_validation import train_test_split

# 划分训练集和测试集
X_train,X_test,y_train,y_test = train_test_split(X,y,random_state=1)
print X_train.shape
print y_train.shape
print X_test.shape
print y_test.shape
(7176, 4)
(7176, 1)
(2392, 4)
(2392, 1)

75%的数据被划分为训练集,25的数据划分为测试集。


6:运行sklearn 线性模型

from sklearn.linear_model import LinearRegression

linreg = LinearRegression()
linreg.fit(X_train,y_train)

# 训练模型完毕,查看结果
print linreg.intercept_
print linreg.coef_
[ 447.06297099]
[[-1.97376045 -0.23229086  0.0693515  -0.15806957]]

即我们得到的模型结果为:

PE=447.062970991.97376045AT0.23229086V+0.0693515AP0.15806957RH

7:模型评价

我们需要评价模型的好坏,通常对于线性回归来讲,我么一般使用均方差(MSE,Mean Squared Error)或者均方根差(RMSE,Root Mean Squared Error)来评价模型的好坏

y_pred = linreg.predict(X_test)
from sklearn import metrics

# 使用sklearn来计算mse和Rmse
print "MSE:",metrics.mean_squared_error(y_test, y_pred)
print "RMSE:",np.sqrt(metrics.mean_squared_error(y_test, y_pred))
MSE: 20.0804012021
RMSE: 4.48111606657

得到了MSE或者RMSE,如果我们用其他方法得到了不同的系数,需要选择模型时,就用MSE小的时候对应的参数。


8:交叉验证

我们可以通过交叉验证来持续优化模型,代码如下,我们采用10折交叉验证,即cross_val_predict中的cv参数为10:

# 交叉验证
from sklearn.model_selection import cross_val_predict
predicted = cross_val_predict(linreg,X,y,cv=10)
print "MSE:",metrics.mean_squared_error(y, predicted)
print "RMSE:",np.sqrt(metrics.mean_squared_error(y, predicted))
MSE: 20.7955974619
RMSE: 4.56021901469

可以看出,采用交叉验证模型的MSE比第6节的大,主要原因是我们这里是对所有折的样本做测试集对应的预测值的MSE,而第6节仅仅对25%的测试集做了MSE。两者的先决条件并不同。


9:画图查看结果

# 画图查看结果
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
ax.scatter(y, predicted)
ax.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw=4)
ax.set_xlabel('Measured')
ax.set_ylabel('Predicted')
plt.show()

这里写图片描述

相关文章
|
消息中间件 物联网 网络性能优化
MQTT常见问题之MQTT不支持5.0的协议如何解决
MQTT(Message Queuing Telemetry Transport)是一个轻量级的、基于发布/订阅模式的消息协议,广泛用于物联网(IoT)中设备间的通信。以下是MQTT使用过程中可能遇到的一些常见问题及其答案的汇总:
|
9月前
|
边缘计算 文字识别 自然语言处理
当OCR遇见大语言模型:智能文本处理的进化之路
简介:本文探讨光学字符识别(OCR)技术与大语言模型(LLM)结合带来的革新。传统OCR在处理模糊文本、复杂排版时存在局限,而LLM的语义理解、结构解析和多模态处理能力恰好弥补这些不足。文中通过代码实例展示了两者融合在错误校正、文档解析、多语言处理、语义检索及流程革新上的五大优势,并以财务报表解析为例,说明了该技术组合在实际应用中的高效性。此外,文章也展望了未来的技术发展趋势,包括多模态架构、小样本学习和边缘计算部署等方向,预示着文本处理技术正迈向智能认知的新时代。(240字)
|
6月前
|
人工智能 自然语言处理 API
魔搭社区模型速递(5.18-5.24)
魔搭ModelScope本期社区进展:📟3790个模型,📁307个数据集,🎨90个创新应用,📄 7 篇内容
473 14
|
小程序 搜索推荐 Java
【技巧】如何在github主页放一条贪吃蛇
本文介绍了如何在GitHub主页上添加贪吃蛇动画,包括设置主页、生成提交记录动画和使用GitHub Action运行工作流程。通过详细步骤和截图演示,展示了从创建仓库到最终展示SVG动画的全过程,并提供了额外的个性化展示内容和相关文章推荐,旨在为读者带来乐趣并提升GitHub页面的趣味性。
460 1
【技巧】如何在github主页放一条贪吃蛇
|
弹性计算 自然语言处理 安全
掌握 In-Context Learning (ICL):构建高效 Prompt 的技巧与调优策略
ICL(In-Context Learning)是一种在大型语言模型中使用的技术,通过提供示例让模型在上下文中理解任务并生成正确输出。核心步骤包括定义任务、选择和格式化示例、编写任务指示,并通过调优和修复错误提高模型性能。欢迎体验阿里云百炼大模型及相关服务产品。
538 1
|
SQL 监控 Oracle
Oracle SQL性能优化全面指南
在数据库管理领域,Oracle SQL性能优化是确保数据库高效运行和数据查询速度的关键
1523 6
|
监控 数据挖掘 数据安全/隐私保护
ERP系统中的培训与发展管理
【7月更文挑战第25天】 ERP系统中的培训与发展管理
784 2
|
数据可视化 Python
如何使用Sklearn库实现线性回归
使用Sklearn实现线性回归的步骤:导入numpy, matplotlib, LinearRegression, train_test_split和metrics模块;准备数据集;划分训练集和测试集;创建线性回归模型;训练模型并预测;计算MSE和R²评估性能;可视化预测结果。示例代码展示了这些步骤,包括数据生成、模型训练及结果展示。
319 6
|
小程序 前端开发 开发者
调用第三方接口微信登录接口
该文档介绍了调用微信登录接口的需求和实现思路。当用户尝试访问需要登录的页面时,若未登录则弹出微信登录选项。登录过程涉及微信小程序的wx.login()方法获取临时凭证code,并将其发送到服务器,服务器通过此code换取用户的OpenID、UnionID和session_key。依据这些信息,服务器可生成自定义登录态以识别用户身份。参考微信官方文档和登录流程图进行实现。
842 9