R语言用多项式回归和ARIMA模型预测电力负荷时间序列数据

简介: R语言用多项式回归和ARIMA模型预测电力负荷时间序列数据

根据我们对温度的预测,我们可以预测电力消耗。绘制电力消耗序列图:


plot(elect,type="l")

 

我们可以尝试一个非常简单的模型,其中日期Y_t的消耗量是时间,温度(以多项式形式表示)以及工业生产指数IPI_t的函数。


lm(Load~1+Time+as.factor(Week)+poly(Temp,3)+Temp+IPI,data=elect )

温度影响的多项式函数来自下图(去除线性趋势后的消耗序列)

 

我们还可以假设自回归形式,其中Y_ {t} 是Y_ {t-1} 的函数



lm(Load~1+Load1+Time+as.factor(Week)+
poly(Temp,3)+Temp1+IPI,data=elect

然后,我们可以尝试进行预测。第二个模型的问题是自回归部分。要预测Y_ {t + h} ,我们必须使用在t + h-1,Y ^ t + h − 1中所作的预测。



IPI = elect[futur,"IPI"])
for(t in 1:110){
base_prevision[t+1,"Load1"] = p}

然后,我们可以预测 Y ^ t与观察值 Yt进行比较。

 

 

我们在夏季估计良好(我们预测了8月上半月的高峰),但我们低估了冬季的消耗量。

最后,我们可以忽略解释变量,而直接尝试建立时间序列模型。


plot(elect[passe,"Load"],type="l")

 

令人担忧的是该序列的异方差,其最小斜率低于最大斜率。


n=length(passe)="l")
m=aggregate(elect
by=list(as.f
points(sort((1
xM=((1:n)[vM])
regm=lm(m$x~xm,col="blue")
regM=lm(M$x~xM,col="blue")
abline(regm,lty=2)
abline(regM,lty=2)

 

经典(简单)的解决方案是取对数


plot(elect
plot(z,type="l")
B = data.frame(z=z,t=1:length

 

然后,我们必须消除线性趋势,以平稳序列



z = residuals(lm(z~t,data=B))




arima(Z,order = c(4,0,0),
seasonal = list(order = c(1

第一个模型是稳定的,没有单位根。我们可以尝试引入季节性单位根


arima(Z,order = c(0,0,0),
seasonal = list(order = c(0,1,

最后,最后一个要简单一些


arima(Z,order = c(1,0,0),
seasonal = list(order = c(2,0,0)))

然后,我们将所有预测存储在数据库中

然后将线性趋势添加到残差的预测中


reg = lm(z~t,data=B)

在这里,我们在 logY上建立了线性模型,即 logY〜N(μ,σ2),因此 E [Y] = exp(μ+σ2/ 2)


sqrt(predict(modelz1,n.ahead = 111)$se^2+sigma^2),

我们在这里假设两个模型(线性趋势和自回归模型的线性)的预测估计量是独立的,因此我们可以对方差项求和。另外,Y的预测是


exp(DOz$z1+1/2*DONNseu$seu1^2),

我们比较三个模型的预测(与观察值)

 

 

我们与之前的预测进行比较,

lines(futur,base_previ
col="orange")

 

夏季预测会有所偏差,而冬季预测我们有所改善。


相关文章
|
3月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
2月前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
58 3
|
3月前
R语言基于表格文件的数据绘制具有多个系列的柱状图与直方图
【9月更文挑战第9天】在R语言中,利用`ggplot2`包可绘制多系列柱状图与直方图。首先读取数据文件`data.csv`,加载`ggplot2`包后,使用`ggplot`函数指定轴与填充颜色,并通过`geom_bar`或`geom_histogram`绘图。参数如`stat`, `position`, `alpha`等可根据需要调整,实现不同系列的图表展示。
|
3月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
4月前
|
数据采集 机器学习/深度学习 数据挖掘
R语言数据清洗:高效处理缺失值与重复数据的策略
【8月更文挑战第29天】处理缺失值和重复数据是数据清洗中的基础而重要的步骤。在R语言中,我们拥有多种工具和方法来有效地应对这些问题。通过识别、删除或插补缺失值,以及删除重复数据,我们可以提高数据集的质量和可靠性,为后续的数据分析和建模工作打下坚实的基础。 需要注意的是,处理缺失值和重复数据时,我们应根据实际情况和数据特性选择合适的方法,并在处理过程中保持谨慎,以避免引入新的偏差或错误。
|
4月前
|
数据采集 存储 数据可视化
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。
|
7月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
7月前
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
|
4月前
|
机器学习/深度学习 数据采集 数据可视化
R语言在数据科学中的应用实例:探索与预测分析
【8月更文挑战第31天】通过上述实例,我们展示了R语言在数据科学中的强大应用。从数据准备、探索、预处理到建模与预测,R语言提供了完整的解决方案和丰富的工具集。当然,数据科学远不止于此,随着技术的不断发展和业务需求的不断变化,我们需要不断学习和探索新的方法和工具,以更好地应对挑战,挖掘数据的潜在价值。 未来,随着大数据和人工智能技术的普及,R语言在数据科学领域的应用将更加广泛和深入。我们期待看到更多创新的应用实例,为各行各业的发展注入新的动力。
|
4月前
|
资源调度 数据挖掘
R语言回归分析:线性回归模型的构建与评估
【8月更文挑战第31天】线性回归模型是统计分析中一种重要且实用的工具,能够帮助我们理解和预测自变量与因变量之间的线性关系。在R语言中,我们可以轻松地构建和评估线性回归模型,从而对数据背后的关系进行深入的探索和分析。