结合新冠疫情COVID-19股票价格预测:ARIMA,KNN和神经网络时间序列分析

简介: 结合新冠疫情COVID-19股票价格预测:ARIMA,KNN和神经网络时间序列分析

1.概要

本文的目标是使用各种预测模型预测Google的未来股价,然后分析各种模型。Google股票数据集是使用R中的Quantmod软件包从Yahoo Finance获得的。


2.简介

预测算法是一种试图根据过去和现在的数据预测未来值的过程。提取并准备此历史数据点,来尝试预测数据集所选变量的未来值。在市场历史期间,一直有一种持续的兴趣试图分析其趋势,行为和随机反应。不断关注在实际发生之前先了解发生了什么,这促使我们继续进行这项研究。我们还将尝试并了解 COVID-19对股票价格的影响。


3.所需包

library(quantmod) R的定量金融建模和交易框架

library(forecast) 预测时间序列和时间序列模型

library(tseries) 时间序列分析和计算金融。

library(timeseries) 'S4'类和金融时间序列的各种工具。

library(readxl) readxl包使你能够轻松地将数据从Excel中取出并输入R中。

library(kableExtra) 显示表格

library(data.table) 大数据的快速聚合

library(DT) 以更好的方式显示数据

library(tsfknn) 进行KNN回归预测


4.数据准备

4.1导入数据

我们使用Quantmod软件包获取了Google股票价格2015年1月1日到2020年4月24日的数据,用于我们的分析。为了分析COVID-19对Google股票价格的影响,我们从quantmod数据包中获取了两组数据。

  • 首先将其命名为data\_before\_covid,其中包含截至2020年2月28日的数据。
  • 第二个名为data\_after\_covid,其中包含截至2020年4月24日的数据。

所有分析和模型都将在两个数据集上进行,以分析COVID-19的影响(如果有)。

getSymbols("GOG" fro= "2015-01-01", to = "2019-02-28")
before_covid <-dafae(GOOG)
getSymbols("GOG" , frm = "2015-01-01")
after_covid <- as.tae(GOOG)

4.2数据的图形表示

par(mfrow = c(1,2))
plot.ts(fore_c)

4.3数据集预览

最终数据集可以在下面的交互式表格中找到。

table(before_covid)

4.4变量汇总

变量 描述
Open 当日股票开盘价
High 当日股票最高价
Low 当日股价最低
Close 当日股票收盘价
Volumn 总交易量
Adjusted 调整后的股票价格,包括风险或策略

5. ARIMA模型

我们首先分析两个数据集的ACF和PACF图。

par(mfrow = c(2,2))
acft(bfoe_covid)
pacf(bfre_covid)

然后,我们进行 ADF(Dickey-Fuller) 检验和 KPSS(Kwiatkowski-Phillips-Schmidt-Shin) 检验,检验两个数据集收盘价的时间序列数据的平稳性。

print(adf.test)

print(adfes(sata\_after\_covid))

通过以上ADF检验,我们可以得出以下结论:

  • 对于COVID-19之前的数据集,ADF测试给出的p值为 0.2093,该值大于0.05,因此说明时间序列数据 不是平稳的
  • 对于COVID-19之后的数据集,ADF测试给出的p值为0.01974,该小于0.05,这说明时间序列数据是 平稳的
print(kpss.s(t\_before\_covid))

print(kpss.est(Dafter_covid))

通过以上KPSS测试,我们可以得出以下结论:

  • 对于COVID-19之前的数据集,KPSS测试得出的p值为 0.01,该值小于0.05,因此说明时间序列数据 不是平稳的
  • 对于COVID-19之后的数据集,KPSS测试给出的p值为 0.01,该值小于0.05,这说明时间序列数据 不是平稳的

因此,我们可以从以上两个测试得出结论,时间序列数据 不是平稳的

然后,我们使用 auto 函数来确定每个数据集的时间序列模型。

auto.ar(befor_covid, lamd = "auto")

auto.arma(after_covid)

从auto函数中,我们得出两个数据集的以下模型:

  • 在COVID-19之前:ARIMA(2,1,0)
  • 在COVID-19之后:ARIMA(1,1,1)

获得模型后,我们将对每个拟合模型执行残差诊断。

par(mfrow = c(2,3))
plot(before_covidresiduals)
plot(mfter_covidresiduals)

从残差图中,我们可以确认残差的平均值为0,并且方差也为常数。对于滞后> 0,ACF为0,而PACF也为0。

因此,我们可以说残差表现得像白噪声,并得出结论:ARIMA(2,1,0)和ARIMA(1,1,1)模型很好地拟合了数据。或者,我们也可以使用Box-Ljung检验在0.05的显着性水平上进行检验残差是符合白噪声。

Box.test(moderesiduals)

Box.tst(moeit\_fter\_covidreia, type = "Ljung-Box")

在此,两个模型的p值均大于0.05。因此,在显着性水平为0.05的情况下,我们无法拒绝原假设,而得出的结论是残差遵循白噪声。这意味着该模型很好地拟合了数据。

一旦为每个数据集确定了模型,就可以预测未来几天的股票价格。

6. KNN回归时间序列预测模型

KNN模型可用于分类和回归问题。最受欢迎的应用是将其用于分类问题。现在,使用r软件包,可以在任何回归任务应用KNN。这项研究的目的是说明不同的预测工具,对其进行比较并分析预测的行为。在我们的KNN研究之后,我们提出可以将其用于分类和回归问题。为了预测新数据点的值,模型使用“特征相似度”,根据新点与训练集上点的相似程度为值分配新点。

第一项任务是确定我们的KNN模型中的k值。选择k值的一般经验法则是取样本中数据点数的平方根。因此,对于COVID-19之前的数据集,我们取k = 32;对于COVID-19之后的数据集,我们取k = 36。

par(mfrow = c(2,1))
knn\_before\_covid <- kn(bfrvdGO.Clse,  k = 32)
knn\_after\_covid <- kn(ber_oiGOG.lose ,k = 36)
plot(knn\_before\_covid )
plot(knn\_after\_covid )

然后,我们针对预测时间序列评估KNN模型。

before\_cvid <- ll\_ig(pdn\_befr\_vid)
afer\_vd<- rog\_ogn(redkn\_afer\_vd)


7.前馈神经网络建模

我们将尝试实现的下一个模型是带有神经网络的预测模型。在此模型中,我们使用单个隐藏层形式,其中只有一层输入节点将加权输入发送到接收节点的下一层。预测函数将单个隐藏层神经网络模型拟合到时间序列。函数模型方法是将时间序列的滞后值用作输入数据,以达到非线性自回归模型。

第一步是确定神经网络的隐藏层数。尽管没有用于计算隐藏层数的特定方法,但时间序列预测遵循的最常见方法是通过计算使用以下公式:

其中Ns:训练样本数Ni:输入神经元数No:输出神经元数a:1.5 ^ -10

#隐藏层的创建

hn\_before\_covid <- length(before.Close)/(alpha*(lengthGOOG.Close + 61)
hn\_after\_covid <- length(after\_covidClose)/(alpha*(lengthafter\_ovdClose+65))
#拟合nn
nn(before\_covid$GOOG.Close, size = hn\_beoe_cid, 
# 使用nnetar进行预测。
 forecast(befe_cvid, h 61, I =UE)
forecast(aftr_coid, h = 5, I = RE)

plot(nn\_fcst\_afte_cvid)

然后,我们使用以下参数分析神经网络模型的性能:

accuracy

accuracy


8.所有模型的比较

现在,我们使用参数诸如RMSE(均方根误差),MAE(均值绝对误差)和MAPE(均值绝对百分比误差)对所有三个模型进行分析 。

sumary\_le\_efore_oid <- data.frame(RMSE = nuerc(), MAE = uer(), 
                            MAPE = numric(), snsAsacrs = FALSE)
summ\_tabe\_fter_ovd <- data.fame(RMSE = umeri(), MAE = nmei(), 
                            MAPE = numeic())
kable(smary\_abe\_eor_oid )

COVID-19之前的数据模型汇总

模型 RMSE MAE MAPE
ARIMA 13.0 8.8 1.0
KNN 44.0 33.7 3.1
神经网络 13.0 8.7 1.0
kable(sumary\_tbl\_aft_ci
fulith = F, fixdtead = T )

COVID-19之后的数据模型汇总

模型 RMSE MAE MAPE
ARIMA 16.6 10.4 1.0
KNN 45.9 35.7 3.3
神经网络 14.7 9.8 1.0

因此,从以上模型性能参数的总结中,我们可以看到神经网络模型在两个数据集上的性能均优于ARIMA和KNN模型。因此,我们将使用神经网络模型来预测未来两个月的股价。

9.最终模型:COVID-19之前

现在,我们使用直到2月的数据来预测3月和4月的值,然后将预测价格与实际价格进行比较,以检查是否由于COVID-19可以归因于任何重大影响。

foestdungcvid<- datafame("De
                                    "Actua Values" = 
datatable(foestdungcvid, ilte= 'to')

从表中我们可以看到,3月和4月期间,Google股票的实际价值通常比预测值要高一些。因此,可以说,尽管发生了这种全球性大流行,但Google股票的表现仍然相当不错。


10.最终模型:COVID-19之后

现在,我们使用直到4月的数据预测5月和6月的值,以了解Google的未来股价。

foreataov <- data.frae(dn_reataeimean )
table(foreataov )

从表中可以得出结论,在5月和6月的接下来的几个月中,Google股票的价格将继续上涨并表现良好。


相关文章
|
1月前
|
人工智能 边缘计算 物联网
蜂窝网络未来发展趋势的分析
蜂窝网络未来发展趋势的分析
67 2
|
1月前
|
数据采集 缓存 定位技术
网络延迟对Python爬虫速度的影响分析
网络延迟对Python爬虫速度的影响分析
|
11天前
|
机器学习/深度学习 算法 Python
基于BP神经网络的金融序列预测matlab仿真
本项目基于BP神经网络实现金融序列预测,使用MATLAB2022A版本进行开发与测试。通过构建多层前馈神经网络模型,利用历史金融数据训练模型,实现对未来金融时间序列如股票价格、汇率等的预测,并展示了预测误差及训练曲线。
|
1天前
|
安全 网络协议 网络安全
网络不稳定导致HTTP代理频繁掉线的分析
随着数字化时代的加速发展,网络安全、隐私保护及内容访问自由成为用户核心需求。HTTP代理服务器因其独特技术优势受到青睐,但其掉线问题频发。本文分析了HTTP代理服务器不稳定导致掉线的主要原因,包括网络问题、服务器质量、用户配置错误及IP资源问题等方面。
14 0
|
26天前
|
安全 网络协议 网络安全
【Azure 环境】从网络包中分析出TLS加密套件信息
An TLS 1.2 connection request was received from a remote client application, but non of the cipher suites supported by the client application are supported by the server. The connection request has failed. 从远程客户端应用程序收到 TLS 1.2 连接请求,但服务器不支持客户端应用程序支持的任何密码套件。连接请求失败。
|
1月前
|
存储 安全 网络安全
网络安全法律框架:全球视角下的合规性分析
网络安全法律框架:全球视角下的合规性分析
45 1
|
1月前
|
网络协议 安全 算法
网络空间安全之一个WH的超前沿全栈技术深入学习之路(9):WireShark 简介和抓包原理及实战过程一条龙全线分析——就怕你学成黑客啦!
实战:WireShark 抓包及快速定位数据包技巧、使用 WireShark 对常用协议抓包并分析原理 、WireShark 抓包解决服务器被黑上不了网等具体操作详解步骤;精典图示举例说明、注意点及常见报错问题所对应的解决方法IKUN和I原们你这要是学不会我直接退出江湖;好吧!!!
网络空间安全之一个WH的超前沿全栈技术深入学习之路(9):WireShark 简介和抓包原理及实战过程一条龙全线分析——就怕你学成黑客啦!
|
2月前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了基于分组卷积神经网络(GroupCNN)和灰狼优化(GWO)的时间序列回归预测算法。算法运行效果良好,无水印展示。使用Matlab2022a开发,提供完整代码及详细中文注释。GroupCNN通过分组卷积减少计算成本,GWO则优化超参数,提高预测性能。项目包含操作步骤视频,方便用户快速上手。
|
1月前
|
网络协议 安全 算法
网络空间安全之一个WH的超前沿全栈技术深入学习之路(9-2):WireShark 简介和抓包原理及实战过程一条龙全线分析——就怕你学成黑客啦!
实战:WireShark 抓包及快速定位数据包技巧、使用 WireShark 对常用协议抓包并分析原理 、WireShark 抓包解决服务器被黑上不了网等具体操作详解步骤;精典图示举例说明、注意点及常见报错问题所对应的解决方法IKUN和I原们你这要是学不会我直接退出江湖;好吧!!!
|
2月前
|
安全 网络协议 物联网
物联网僵尸网络和 DDoS 攻击的 CERT 分析
物联网僵尸网络和 DDoS 攻击的 CERT 分析

热门文章

最新文章

下一篇
DataWorks