纽约大学的好奇AI特别会提问,桌游玩得比人还666

简介:
本文来自AI新媒体量子位(QbitAI)

纽约大学的科学家们开发了一个非常“好奇”的人工智能系统,桌游玩得相当不错。

在开始介绍他们的研究之前,我们先了解一下AI玩的桌游——《战舰》——是个怎样的游戏。

e11e923edb34b1d7bcc579b51f6d6c32f24db239

根据NYU科学家们的描述,这是一个由传统《战舰》改编而来的两人游戏,两名玩家分别有一个6×6方格组成的棋盘,每个方格都可以翻转,默认空白面朝上,翻过来就可以看见背面的颜色,如果相邻的方格颜色相同,就构成了一艘“战舰”。每块棋盘上随机分布着3艘战舰,颜色分别是蓝色、红色、紫色,宽度是1,长度分别是2、3、4,朝向可能是水平、垂直,除了战舰之外的方块是浅灰色的,代表“水”。

f42220e6bdca2411244040b64be945a733cf51d2

玩家能看到一个如上图b和c所示,部分方格已经翻转过来的棋盘,他们的目标就是靠问问题,尽快猜出对方“战舰”的大小、方向和位置。玩家问的问题必须能用1个词来回答,比如真/假、一个数字、一种颜色、一个坐标、行数、列数。以上面的图b为例,“红色和紫色的战舰相连吗?”就是一个很好的问题。

也就是说,要玩好这个游戏,关键是问出正确的问题。

介绍完游戏,回到我们的正题:能玩好《战舰》,也就是说他们的AI能够根据眼前的局势,用自然语言问出合适的问题。这是怎么做到的?

纽约大学这项研究的灵感来自认知心理学,所用的方法和当今大部分AI都不一样。他们的研究成果形成了论文Question Asking as Program Generation,作者是纽约大学研究生Anselm Rothe、助理教授Brenden M. Lake和副教授Todd M. Gureckis,即将发表在12月的NIPS 2017上。

7fbfe41bc39b8388a456adddbfe98f512ebfb93c

在这项研究中,他们开发的算法将问题看做小型程序,算法从一些样例中学习,然后基于自己学到的东西,来构建自己的问题。

二作Lake说,探索世界上的信息时,人类和机器提问的能力有着巨大的差距。

因此,他们先让人类玩这个游戏,然后记录下人类玩家所提出的问题,然后将这些问题转换成概念组件,例如“蓝色的战舰有多长?”这个问题是关于长度的,“蓝色和红色战舰相连吗?”是关于位置的。

然后,科学家们用一种简单的编程语言将这些问题编码,建立一个概率模型,来找出哪个问题能够问出最有用的信息。这种方法论让这个AI系统能高效生成帮它赢得游戏的新问题。

现在大多数AI都是靠从大量样例数据中学习,但纽约大学的这个团队用了一种更依赖人工编程的方法。这个系统生成问题的方法更加系统,却甚至能够生成出人类想不到的问题。

几位科学家正在探索他们的技术能怎样让聊天机器人等对话式系统更有效,用起来不那么痛苦。比如说用在客服系统中,这个算法有希望通过问出正确的问题,更快帮客户解决他们的问题。

Lake说,让对话系统通过提出新问题来获取更有用的情报,能够让人机交互更胜利,让系统更有用、有趣。

更让人印象深刻的是,这个玩《战舰》游戏的程序能构建出“终极问题”,包含一系列的数学计算,比如将一艘战舰的长度加上另一艘战舰长度的10倍等等。对于人类来说,这样的问题肯定想不出来,也不太好回答,但是从答案反推,就能够算出整个棋盘的情况。

哈佛大学助理教授Sam Gershman的研究方向和这几位作者类似,也是开发由认知神经科学所启发的AI系统。他说,纽约大学的这项研究对于人类如何想出好问题也有深刻的观察。“首先,要抓住混乱的问题类型,你需要某种类型的语义合成性,第二,你需要用一组条件来衡量一个问题的相对优缺点。”

Gershman还说,人类的提问策略,似乎和系统所用的比较成功的方法很相似,会仔细评估问题的复杂度,来分散使用认知资源。

机器要想变得真正智能起来,它们必须对周围的世界有好奇心。问问题就是一个好开端。

Technology Review原文:https://www.technologyreview.com/s/609507/this-inquisitive-ai-will-kick-your-butt-at-battleship/

论文地址:https://arxiv.org/abs/1711.06351

本文作者:李林 
原文发布时间:2017-11-25 
相关文章
|
2月前
|
人工智能
添加一个Stable Difussion图像生成应用,通过向AI助手简单的提问,即可快速搭建Stable Diffusion应用至自己的网站中,大幅提升开发效率。
添加一个Stable Difussion图像生成应用,通过向AI助手简单的提问,即可快速搭建Stable Diffusion应用至自己的网站中,大幅提升开发效率。
|
7月前
|
XML 人工智能 程序员
AI回答总不满意?你的提问方式可能完全错误!
卷福分享AI提问技巧:1) 提供详细信息,明确问题背景;2) 让AI扮演角色,增强回答针对性;3) 使用分隔符处理多部分请求;4) 提供示例以确保回答风格一致。这4个技巧能帮助你更好地引导AI生成你需要的内容。适用于ChatGPT及其他大语言模型。
392 7
AI回答总不满意?你的提问方式可能完全错误!
|
5月前
|
人工智能
好的官网设计---AI应答版面设计,会员提问窗口
好的官网设计---AI应答版面设计,会员提问窗口
|
5月前
|
人工智能
AI软件开发大模型,最简单的相关构思,有提问的输入框,有返回答案的答案框
AI软件开发大模型,最简单的相关构思,有提问的输入框,有返回答案的答案框
|
SQL XML 存储
如何有效的向 AI 提问 ?
随着人工智能技术的迅猛发展,大语言模型(LLM)以微软 OpenAI 为代表,初次问世,为新一次的 AI 革命打响了第一枪。在短短的几个月内,GPT-3.5 和 GPT-4 的加持下,New Bing、Copilot、Cursor 等产品也相继问世,推动了产品开发的新思路。国内厂商也紧随其后,百度文心一言、华为盘古大模型、阿里通义千问、讯飞星火认知大模型相继发布。 我们现在可以通过与 AI 进行对话来获取各种信息和解决问题。但想要获得更准确、有用的回答,我们需要掌握如何向 AI 提问的技巧和方法。本文将探讨一些技巧,帮助您在与 ChatGPT 和其他类 ChatGPT 的大语言模型对话时更加有
1116 1
如何有效的向 AI 提问 ?
|
机器学习/深度学习 SQL 人工智能
当AI客服遇上「图文混排」提问,京东给电商AI来了场摸底考试
当买家非要「看图说话」,AI 客服要怎么破?
407 0
当AI客服遇上「图文混排」提问,京东给电商AI来了场摸底考试
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
转载:【AI系统】AI的领域、场景与行业应用
本文概述了AI的历史、现状及发展趋势,探讨了AI在计算机视觉、自然语言处理、语音识别等领域的应用,以及在金融、医疗、教育、互联网等行业中的实践案例。随着技术进步,AI模型正从单一走向多样化,从小规模到大规模分布式训练,企业级AI系统设计面临更多挑战,同时也带来了新的研究与工程实践机遇。文中强调了AI基础设施的重要性,并鼓励读者深入了解AI系统的设计原则与研究方法,共同推动AI技术的发展。
转载:【AI系统】AI的领域、场景与行业应用
|
1天前
|
机器学习/深度学习 人工智能 算法
探索AI在医疗诊断中的应用与挑战
【10月更文挑战第21天】 本文深入探讨了人工智能(AI)技术在医疗诊断领域的应用现状与面临的挑战,旨在为读者提供一个全面的视角,了解AI如何改变传统医疗模式,以及这一变革过程中所伴随的技术、伦理和法律问题。通过分析AI技术的优势和局限性,本文旨在促进对AI在医疗领域应用的更深层次理解和讨论。