主成分分析PCA学习笔记

简介:

主成分分析(principal components analysis,PCA)是一个简单的机器学习算法,主要思想是对高维数据进行降维处理,去除数据中的冗余信息和噪声。
算法:
输入样本:$D=\left \{ x_{1},x_{2},\cdots ,x_{m}\right \}$

               低纬空间的维数

过程:·
1:对所有样本进行中心化:$x_i\leftarrow x_i-\frac{1}{m}\sum_{i=1}^{m}x_i$;
2:计算所有样本的协方差矩阵:$XX^T$;
3:对协方差矩阵$XX^T$做特征值分解;
4:取最大的${d}'$个特征值做所对应的特征向量$w_1,w_2,\cdots ,w_{d'}$.
输出:投影矩阵$W=(w_1,w_2,\cdots ,w_{d'})$
PCA算法主要用在图像的压缩,图像的融合,人脸识别上:

PCA

在python的sklearn包中给出了PCA的接口:

from sklearn.decomposition import PCA
import numpy as np

X=np.array([[-1,-1],[-2,-1],[-3,-2],[1,1],[2,1],[3,2]])
#pca=PCA(n_components=2)
pca=PCA(n_components='mle')
pca.fit(X)
print(pca.explained_variance_ratio_)

以自己造的数据集进行测试并测试
程序提取了一个特征值

对二维数据进行降维

用PCA算法对testSet.txt数据集进行降维处理


import numpy as np
import matplotlib.pyplot as plt


def loadDataSet(filename, delim='\t'):
    fr = open(filename)
    StringArr = [line.strip().split(delim) for line in fr.readlines()]
    datArr = [map(float, line) for line in StringArr]
    return np.mat(datArr)


def pca(dataMat, topNfeat=9999999):
    meanVals = np.mean(dataMat, axis=0)
    meanRemoved = dataMat - meanVals  # remove mean
    covMat = np.cov(meanRemoved, rowvar=0)  # 寻找方差最大的方向a,Var(a'X)=a'Cov(X)a方向误差最大
    eigVals, eigVects = np.linalg.eig(np.mat(covMat))
    eigValInd = np.argsort(eigVals)  # sort, sort goes smallest to largest
    eigValInd = eigValInd[:-(topNfeat + 1):-1]  # cut off unwanted dimensions
    redEigVects = eigVects[:, eigValInd]  # reorganize eig vects largest to smallest
    lowDDataMat = meanRemoved * redEigVects  # transform data into new dimensions
    reconMat = (lowDDataMat * redEigVects.T) + meanVals
    return lowDDataMat, reconMat


dataMat = loadDataSet( 'testSet.txt')
print(dataMat)
lowDMat, recoMat = pca(dataMat, 1)
print(u'特征值是:')
print(lowDMat)
print(u'特征向量是:')
print(recoMat)

fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(np.array(dataMat[:, 0]),np.array(dataMat[:, 1]), marker='^', s=90)
ax.scatter(np.array(recoMat[:, 0]), np.array(recoMat[:, 1]), marker='o', s=50, c='red')
plt.show()


def replaceNanWithMean():
    datMat = loadDataSet('secom.data', ' ')
    numFeat = np.shape(datMat)[1]
    for i in range(numFeat):
        meanVal = np.mean(datMat[np.nonzero(~np.isnan(datMat[:, i].A))[0], i])
        datMat[np.nonzero(np.isnan(datMat[:, i].A))[0], i] = meanVal
    return datMat


dataMat = replaceNanWithMean()
meanVals = np.mean(dataMat, axis=0)
meanRemoved = dataMat - meanVals  # remove mean
covMat = np.cov(meanRemoved, rowvar=0)
eigVals, eigVects = np.linalg.eig(np.mat(covMat))
eigValInd = np.argsort(eigVals)  # sort, sort goes smallest to largest
eigValInd = eigValInd[::-1]  # reverse
sortedEigVals = eigVals[eigValInd]
total = sum(sortedEigVals)
varPercentage = sortedEigVals / total * 100
# 计算主成分方差
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(range(1, 21), varPercentage[:20], marker='^')
plt.xlabel('Principal Component Number')
plt.ylabel('Percentage of Variance')
plt.show()

结果:
蓝色三角形为原始数据,红色圆为数据的主方向,可以看到PCA算法很好地找到了数据的主方向
20171227201211150

人脸识别:

att_faces中含有40张脸,每张脸10张92*112像素灰度照片的数据集
faces

这里以att_faces数据集为例:

import os
import operator
from numpy import *
import matplotlib.pyplot as plt
import cv2

# define PCA
def pca(data,k):
    data = float32(mat(data))
    rows,cols = data.shape#取大小
    data_mean = mean(data,0)
    data_mean_all = tile(data_mean,(rows,1))
    Z = data - data_mean_all#中心化
    T1 = Z*Z.T #计算样本的协方差
    D,V = linalg.eig(T1) #特征值与特征向量
    V1 = V[:,0:k]#取前k个特征向量
    V1 = Z.T*V1
    for i in range(k): #特征向量归一化
        L = linalg.norm(V1[:,i])
        V1[:,i] = V1[:,i]/L

    data_new = Z*V1 # 降维后的数据
    return data_new,data_mean,V1#训练结果

#covert image to vector
def img2vector(filename):
    img = cv2.imread(filename,0) #读取图片
    rows,cols = img.shape
    imgVector = zeros((1,rows*cols)) #create a none vectore:to raise speed
    imgVector = reshape(img,(1,rows*cols)) #change img from 2D to 1D
    return imgVector

#load dataSet
def loadDataSet(k):  #choose k(0-10) people as traintest for everyone
    ##step 1:Getting data set
    print ("--Getting data set---")
    #note to use '/'  not '\'
    dataSetDir = 'att_faces/orl_faces'
    #读取文件夹
    choose = random.permutation(10)+1 #随机排序1-10 (0-9)+1
    train_face = zeros((40*k,112*92))
    train_face_number = zeros(40*k)
    test_face = zeros((40*(10-k),112*92))
    test_face_number = zeros(40*(10-k))
    for i in range(40): #40 sample people
        people_num = i+1
        for j in range(10): #everyone has 10 different face
            if j < k:
                filename = dataSetDir+'/s'+str(people_num)+'/'+str(choose[j])+'.pgm'
                img = img2vector(filename)
                train_face[i*k+j,:] = img
                train_face_number[i*k+j] = people_num
            else:
                filename = dataSetDir+'/s'+str(people_num)+'/'+str(choose[j])+'.pgm'
                img = img2vector(filename)
                test_face[i*(10-k)+(j-k),:] = img
                test_face_number[i*(10-k)+(j-k)] = people_num

    return train_face,train_face_number,test_face,test_face_number

# calculate the accuracy of the test_face
def facefind():
    # Getting data set
    train_face,train_face_number,test_face,test_face_number = loadDataSet(4)
    # PCA training to train_face
    data_train_new,data_mean,V = pca(train_face,40)
    num_train = data_train_new.shape[0]
    num_test = test_face.shape[0]
    temp_face = test_face - tile(data_mean,(num_test,1))
    data_test_new = temp_face*V #对测试集进行降维
    data_test_new = array(data_test_new) # mat change to array
    data_train_new = array(data_train_new)
    true_num = 0
    for i in range(num_test):
        testFace = data_test_new[i,:]
        diffMat = data_train_new - tile(testFace,(num_train,1))
        sqDiffMat = diffMat**2
        sqDistances = sqDiffMat.sum(axis=1)
        sortedDistIndicies = sqDistances.argsort()
        indexMin = sortedDistIndicies[0]
        if train_face_number[indexMin] == test_face_number[i]:
            true_num += 1

    accuracy = float(true_num)/num_test
    print ('The classify accuracy is: %.2f%%'%(accuracy * 100))

def main():
    facefind()

if __name__=='__main__':
    main()

结果:
_

由于每次选择训练的图片是随机的,随后的准确率也是会变化的,当提高低维空间的维度时能提高准确率
timg

目录
相关文章
|
7月前
|
数据采集 机器学习/深度学习 搜索推荐
大模型开发: 描述主成分分析(PCA)以及它在降维中的应用。
PCA是广泛应用的降维技术,通过线性变换找到最大化方差的主成分,降低数据维度,简化计算并揭示数据结构。步骤包括数据预处理、计算协方差矩阵、特征值分解、选择主成分和数据转换。适用于图像识别、推荐系统等领域,但无监督性质可能导致类别信息丢失,且假设数据服从高斯分布。
127 1
|
4月前
|
机器学习/深度学习 算法 数据中心
【机器学习】面试问答:PCA算法介绍?PCA算法过程?PCA为什么要中心化处理?PCA为什么要做正交变化?PCA与线性判别分析LDA降维的区别?
本文介绍了主成分分析(PCA)算法,包括PCA的基本概念、算法过程、中心化处理的必要性、正交变换的目的,以及PCA与线性判别分析(LDA)在降维上的区别。
108 4
|
7月前
|
数据采集 数据可视化 数据挖掘
使用R语言进行主成分分析(PCA)
【4月更文挑战第26天】本文介绍了如何使用R语言进行主成分分析(PCA),包括安装必要包`stats`、`FactoMineR`和`factoextra`,数据预处理如标准化,使用`PCA()`函数执行PCA,以及通过`summary()`、`fviz_pca_ind()`和`fviz_pca_var()`进行结果解读和可视化。此外,还讨论了如何通过载荷系数解释主成分,强调PCA在数据降维和探索数据结构中的作用。
333 1
|
7月前
|
算法 数据可视化 Python
使用Python实现主成分分析(PCA)
使用Python实现主成分分析(PCA)
269 4
|
数据采集 机器学习/深度学习 数据可视化
R实战| PCA、tSNE、UMAP三种降维方法在R中的实现
R实战| PCA、tSNE、UMAP三种降维方法在R中的实现
330 0
|
7月前
|
数据采集
主成分分析
主成分分析
116 0
|
机器学习/深度学习 数据可视化 算法
通俗易懂的讲解奇异值分解(SVD)和主成分分析(PCA)
通俗易懂的讲解奇异值分解(SVD)和主成分分析(PCA)
505 1
通俗易懂的讲解奇异值分解(SVD)和主成分分析(PCA)
|
机器学习/深度学习 算法 Python
机器学习算法之---PCA(主成分分析)
PCA(Principal Component Analysis)是一种常用的数据降维方法,可以将高维的数据降维到低维,以提取关键信息和减少噪音。它通过找到数据集中最重要的方向,并将数据在这个方向上投影,从而实现降维。
210 0
机器学习算法之---PCA(主成分分析)
|
机器学习/深度学习 数据可视化 算法
.Kmeans无监督学习主成分分析(PCA)
.Kmeans无监督学习主成分分析(PCA)
230 0
.Kmeans无监督学习主成分分析(PCA)