# 主成分分析PCA学习笔记

               低纬空间的维数


1：对所有样本进行中心化：$x_i\leftarrow x_i-\frac{1}{m}\sum_{i=1}^{m}x_i$；
2：计算所有样本的协方差矩阵：$XX^T$；
3:对协方差矩阵$XX^T$做特征值分解；
4：取最大的${d}'$个特征值做所对应的特征向量$w_1,w_2,\cdots ,w_{d'}$.

PCA算法主要用在图像的压缩，图像的融合，人脸识别上：

### PCA

from sklearn.decomposition import PCA
import numpy as np

X=np.array([[-1,-1],[-2,-1],[-3,-2],[1,1],[2,1],[3,2]])
#pca=PCA(n_components=2)
pca=PCA(n_components='mle')
pca.fit(X)
print(pca.explained_variance_ratio_)

### 对二维数据进行降维


import numpy as np
import matplotlib.pyplot as plt

fr = open(filename)
StringArr = [line.strip().split(delim) for line in fr.readlines()]
datArr = [map(float, line) for line in StringArr]
return np.mat(datArr)

def pca(dataMat, topNfeat=9999999):
meanVals = np.mean(dataMat, axis=0)
meanRemoved = dataMat - meanVals  # remove mean
covMat = np.cov(meanRemoved, rowvar=0)  # 寻找方差最大的方向a,Var(a'X)=a'Cov(X)a方向误差最大
eigVals, eigVects = np.linalg.eig(np.mat(covMat))
eigValInd = np.argsort(eigVals)  # sort, sort goes smallest to largest
eigValInd = eigValInd[:-(topNfeat + 1):-1]  # cut off unwanted dimensions
redEigVects = eigVects[:, eigValInd]  # reorganize eig vects largest to smallest
lowDDataMat = meanRemoved * redEigVects  # transform data into new dimensions
reconMat = (lowDDataMat * redEigVects.T) + meanVals
return lowDDataMat, reconMat

print(dataMat)
lowDMat, recoMat = pca(dataMat, 1)
print(u'特征值是：')
print(lowDMat)
print(u'特征向量是：')
print(recoMat)

fig = plt.figure()
ax.scatter(np.array(dataMat[:, 0]),np.array(dataMat[:, 1]), marker='^', s=90)
ax.scatter(np.array(recoMat[:, 0]), np.array(recoMat[:, 1]), marker='o', s=50, c='red')
plt.show()

def replaceNanWithMean():
numFeat = np.shape(datMat)[1]
for i in range(numFeat):
meanVal = np.mean(datMat[np.nonzero(~np.isnan(datMat[:, i].A))[0], i])
datMat[np.nonzero(np.isnan(datMat[:, i].A))[0], i] = meanVal
return datMat

dataMat = replaceNanWithMean()
meanVals = np.mean(dataMat, axis=0)
meanRemoved = dataMat - meanVals  # remove mean
covMat = np.cov(meanRemoved, rowvar=0)
eigVals, eigVects = np.linalg.eig(np.mat(covMat))
eigValInd = np.argsort(eigVals)  # sort, sort goes smallest to largest
eigValInd = eigValInd[::-1]  # reverse
sortedEigVals = eigVals[eigValInd]
total = sum(sortedEigVals)
varPercentage = sortedEigVals / total * 100
# 计算主成分方差
fig = plt.figure()
ax.plot(range(1, 21), varPercentage[:20], marker='^')
plt.xlabel('Principal Component Number')
plt.ylabel('Percentage of Variance')
plt.show()

### 人脸识别：

att_faces中含有40张脸，每张脸10张92*112像素灰度照片的数据集

import os
import operator
from numpy import *
import matplotlib.pyplot as plt
import cv2

# define PCA
def pca(data,k):
data = float32(mat(data))
rows,cols = data.shape#取大小
data_mean = mean(data,0)
data_mean_all = tile(data_mean,(rows,1))
Z = data - data_mean_all#中心化
T1 = Z*Z.T #计算样本的协方差
D,V = linalg.eig(T1) #特征值与特征向量
V1 = V[:,0:k]#取前k个特征向量
V1 = Z.T*V1
for i in range(k): #特征向量归一化
L = linalg.norm(V1[:,i])
V1[:,i] = V1[:,i]/L

data_new = Z*V1 # 降维后的数据
return data_new,data_mean,V1#训练结果

#covert image to vector
def img2vector(filename):
rows,cols = img.shape
imgVector = zeros((1,rows*cols)) #create a none vectore:to raise speed
imgVector = reshape(img,(1,rows*cols)) #change img from 2D to 1D
return imgVector

def loadDataSet(k):  #choose k(0-10) people as traintest for everyone
##step 1:Getting data set
print ("--Getting data set---")
#note to use '/'  not '\'
dataSetDir = 'att_faces/orl_faces'
#读取文件夹
choose = random.permutation(10)+1 #随机排序1-10 (0-9）+1
train_face = zeros((40*k,112*92))
train_face_number = zeros(40*k)
test_face = zeros((40*(10-k),112*92))
test_face_number = zeros(40*(10-k))
for i in range(40): #40 sample people
people_num = i+1
for j in range(10): #everyone has 10 different face
if j < k:
filename = dataSetDir+'/s'+str(people_num)+'/'+str(choose[j])+'.pgm'
img = img2vector(filename)
train_face[i*k+j,:] = img
train_face_number[i*k+j] = people_num
else:
filename = dataSetDir+'/s'+str(people_num)+'/'+str(choose[j])+'.pgm'
img = img2vector(filename)
test_face[i*(10-k)+(j-k),:] = img
test_face_number[i*(10-k)+(j-k)] = people_num

return train_face,train_face_number,test_face,test_face_number

# calculate the accuracy of the test_face
def facefind():
# Getting data set
# PCA training to train_face
data_train_new,data_mean,V = pca(train_face,40)
num_train = data_train_new.shape[0]
num_test = test_face.shape[0]
temp_face = test_face - tile(data_mean,(num_test,1))
data_test_new = temp_face*V #对测试集进行降维
data_test_new = array(data_test_new) # mat change to array
data_train_new = array(data_train_new)
true_num = 0
for i in range(num_test):
testFace = data_test_new[i,:]
diffMat = data_train_new - tile(testFace,(num_train,1))
sqDiffMat = diffMat**2
sqDistances = sqDiffMat.sum(axis=1)
sortedDistIndicies = sqDistances.argsort()
indexMin = sortedDistIndicies[0]
if train_face_number[indexMin] == test_face_number[i]:
true_num += 1

accuracy = float(true_num)/num_test
print ('The classify accuracy is: %.2f%%'%(accuracy * 100))

def main():
facefind()

if __name__=='__main__':
main()

+ 订阅