Druid(准)实时分析统计数据库——列存储+高效压缩

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
云数据库 RDS PostgreSQL,高可用系列 2核4GB
简介:

Druid是一个开源的、分布式的、列存储系统,特别适用于大数据上的(准)实时分析统计。且具有较好的稳定性(Highly Available)。 其相对比较轻量级,文档非常完善,也比较容易上手。

Druid vs 其他系统

Druid vs Impala/Shark

Druid和Impala、Shark 的比较基本上可以归结为需要设计什么样的系统

Druid被设计用于:

  1. 一直在线的服务
  2. 获取实时数据
  3. 处理slice-n-dice式的即时查询

查询速度不同:

  • Druid是列存储方式,数据经过压缩加入到索引结构中,压缩增加了RAM中的数据存储能力,能够使RAM适应更多的数据快速存取。索引结构意味着,当添加过滤器来查询,Druid少做一些处理,将会查询的更快。
  • Impala/Shark可以认为是HDFS之上的后台程序缓存层。 但是他们没有超越缓存功能,真正的提高查询速度。

数据的获取不同:

  • Druid可以获取实时数据。
  • Impala/Shark是基于HDFS或者其他后备存储,限制了数据获取的速度。

查询的形式不同:

  • Druid支持时间序列和groupby样式的查询,但不支持join。
  • Impala/Shark支持SQL样式的查询。

Druid vs Elasticsearch

Elasticsearch(ES) 是基于Apache Lucene的搜索服务器。它提供了全文搜索的模式,并提供了访问原始事件级数据。 Elasticsearch还提供了分析和汇总支持。根据研究,ES在数据获取和聚集用的资源比在Druid高。

Druid侧重于OLAP工作流程。Druid是高性能(快速聚集和获取)以较低的成本进行了优化,并支持广泛的分析操作。Druid提供了结构化的事件数据的一些基本的搜索支持。

 

Segment: Druid中有个重要的数据单位叫segment,其是Druid通过bitmap indexing从raw data生成的(batch or realtime)。segment保证了查询的速度。可以自己设置每个segment对应的数据粒度,这个应用中广告流量查询的最小粒度是天,所以每天的数据会被创建成一个segment。注意segment是不可修改的,如果需要修改,只能够修改raw data,重新创建segment了。

架构

Druid本身包含5个组成部分:Broker nodes, Historical nodes, Realtime nodes, Coordinator Nodes和indexing services. 分别的作用如下:

  • Broker nodes: 负责响应外部的查询请求,通过查询Zookeeper将请求划分成segments分别转发给Historical和Real-time nodes,最终合并并返回查询结果给外部;
  • Historial nodes: 负责’Historical’ segments的存储和查询。其会从deep storage中load segments,并响应Broder nodes的请求。Historical nodes通常会在本机同步deep storage上的部分segments,所以即使deep storage不可访问了,Historical nodes还是能serve其同步的segments的查询;
  • Real-time nodes: 用于存储和查询热数据,会定期地将数据build成segments移到Historical nodes。一般会使用外部依赖kafka来提高realtime data ingestion的可用性。如果不需要实时ingest数据到cluter中,可以舍弃Real-time nodes,只定时地batch ingestion数据到deep storage;
  • Coordinator nodes: 可以认为是Druid中的master,其通过Zookeeper管理Historical和Real-time nodes,且通过Mysql中的metadata管理Segments
  • Druid中通常还会起一些indexing services用于数据导入,batch data和streaming data都可以通过给indexing services发请求来导入数据。

Druid还包含3个外部依赖

  • Mysql:存储Druid中的各种metadata(里面的数据都是Druid自身创建和插入的),包含3张表:”druid_config”(通常是空的), “druid_rules”(coordinator nodes使用的一些规则信息,比如哪个segment从哪个node去load)和“druid_segments”(存储每个segment的metadata信息);
  • Deep storage: 存储segments,Druid目前已经支持本地磁盘,NFS挂载磁盘,HDFS,S3等。Deep Storage的数据有2个来源,一个是batch Ingestion, 另一个是real-time nodes;
  • ZooKeeper: 被Druid用于管理当前cluster的状态,比如记录哪些segments从Real-time nodes移到了Historical nodes;

查询

Druid的查询是通过给Broker Nodes发送HTTP POST请求(也可以直接给Historical or Realtime Node),具体可见Druid官方文档。查询条件的描述是json文件,查询的response也是json格式。Druid的查询包含如下4种:

  • Time Boundary Queries: 用于查询全部数据的时间跨度
  • groupBy Queries: 是Druid的最典型查询方式,非常类似于Mysql的groupBy查询。query body中几个元素可以这么理解:    
    • “aggregation”: 对应mysql”select XX from”部分,即你想查哪些列的聚合结果;
    • “dimensions”: 对应mysql”group by XX”,即你想基于哪些列做聚合;
    • “filter”: 对应mysql”where XX”条件,即过滤条件;
    • “granularity”: 数据聚合的粒度;
  • Timeseries queries: 其统计满足filter条件的”rows”上某几列的聚合结果,相比”groupBy Queries”不指定基于哪几列进行聚合,效率更高;
  • TopN queries: 用于查询某一列上按照某种metric排序的最常见的N个values;

本文小结

  1. Druid是一个开源的,分布式的,列存储的,适用于实时数据分析的系统,文档详细,易于上手;    
    • Druid在设计时充分考虑到了Highly Available,各种nodes挂掉都不会使得druid停止工作(但是状态会无法更新);
    • Druid中的各个components之间耦合性低,如果不需要streaming data ingestion完全可以忽略realtime node;
    • Druid的数据单位Segment是不可修改的,我们的做法是生成新的segments替换现有的;
    • Druid使用Bitmap indexing加速column-store的查询速度,使用了一个叫做CONCISE的算法来对bitmap indexing进行压缩,使得生成的segments比原始文本文件小很多;
  2. 在我们的应用场景下(一共10几台机器,数据大概100列,行数是亿级别),平均查询时间<2秒,是同样机器数目的Mysql cluter的1/100 ~ 1/10;
  3. Druid的一些“局限”:
    • Segment的不可修改性简化了Druid的实现,但是如果你有修改数据的需求,必须重新创建segment,而bitmap indexing的过程是比较耗时的;
    • Druid能接受的数据的格式相对简单,比如不能处理嵌套结构的数据
















 


   本文转自张昺华-sky博客园博客,原文链接:http://www.cnblogs.com/bonelee/p/6248172.html,如需转载请自行联系原作者    


相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。 &nbsp; 相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情:&nbsp;https://www.aliyun.com/product/rds/mysql&nbsp;
相关文章
|
18天前
|
缓存 关系型数据库 BI
使用MYSQL Report分析数据库性能(下)
使用MYSQL Report分析数据库性能
54 3
|
3月前
|
存储 Oracle 关系型数据库
服务器数据恢复—光纤存储上oracle数据库数据恢复案例
一台光纤服务器存储上有16块FC硬盘,上层部署了Oracle数据库。服务器存储前面板2个硬盘指示灯显示异常,存储映射到linux操作系统上的卷挂载不上,业务中断。 通过storage manager查看存储状态,发现逻辑卷状态失败。再查看物理磁盘状态,发现其中一块盘报告“警告”,硬盘指示灯显示异常的2块盘报告“失败”。 将当前存储的完整日志状态备份下来,解析备份出来的存储日志并获得了关于逻辑卷结构的部分信息。
|
10天前
|
数据采集 数据可视化 数据挖掘
阿里云瑶池数据库 Data Agent,数据安全,分析准确,让数据更有价值!
Data Agent 是阿里云瑶池数据库推出的智能数据体产品,融合 Data+AI 与 Agentic AI 技术,覆盖数据全生命周期。支持多源数据接入,可自主规划分析任务、生成代码并输出可视化洞察报告,让业务人员零门槛获取专业级分析结果,助力企业高效实现数据驱动决策。
|
18天前
|
缓存 监控 关系型数据库
使用MYSQL Report分析数据库性能(上)
最终建议:当前系统是完美的读密集型负载模型,优化重点应放在减少行读取量和提高数据定位效率。通过索引优化、分区策略和内存缓存,预期可降低30%的CPU负载,同时保持100%的缓冲池命中率。建议每百万次查询后刷新统计信息以持续优化
81 6
|
18天前
|
缓存 监控 关系型数据库
使用MYSQL Report分析数据库性能(中)
使用MYSQL Report分析数据库性能
73 1
|
4月前
|
存储 关系型数据库 数据库
高性能云盘:一文解析RDS数据库存储架构升级
性能、成本、弹性,是客户实际使用数据库过程中关注的三个重要方面。RDS业界率先推出的高性能云盘(原通用云盘),是PaaS层和IaaS层的深度融合的技术最佳实践,通过使用不同的存储介质,为客户提供同时满足低成本、低延迟、高持久性的体验。
|
6月前
|
SQL 存储 分布式数据库
分布式存储数据恢复—hbase和hive数据库数据恢复案例
分布式存储数据恢复环境: 16台某品牌R730xd服务器节点,每台服务器节点上有数台虚拟机。 虚拟机上部署Hbase和Hive数据库。 分布式存储故障: 数据库底层文件被误删除,数据库不能使用。要求恢复hbase和hive数据库。
208 12
|
7月前
|
存储 SQL 安全
【赵渝强老师】达梦数据库的物理存储结构
本文介绍了达梦数据库的存储结构及各类物理文件的作用。达梦数据库通过逻辑和物理存储结构管理数据,包含配置文件(如dm.ini、sqllog.ini)、控制文件(dm.ctl)、数据文件(*.dbf)、重做日志文件(*.log)、归档日志文件、备份文件(*.bak)等。配置文件用于功能设置,控制文件记录数据库初始信息,数据文件存储实际数据,重做日志用于故障恢复,归档日志增强数据安全性,备份文件保障数据完整性,跟踪与事件日志辅助问题分析。这些文件共同确保数据库高效、稳定运行。
293 0
|
24天前
|
关系型数据库 MySQL 数据库
自建数据库如何迁移至RDS MySQL实例
数据库迁移是一项复杂且耗时的工程,需考虑数据安全、完整性及业务中断影响。使用阿里云数据传输服务DTS,可快速、平滑完成迁移任务,将应用停机时间降至分钟级。您还可通过全量备份自建数据库并恢复至RDS MySQL实例,实现间接迁移上云。
|
2月前
|
存储 运维 关系型数据库
从MySQL到云数据库,数据库迁移真的有必要吗?
本文探讨了企业在业务增长背景下,是否应从 MySQL 迁移至云数据库的决策问题。分析了 MySQL 的优势与瓶颈,对比了云数据库在存储计算分离、自动化运维、多负载支持等方面的优势,并提出判断迁移必要性的五个关键问题及实施路径,帮助企业理性决策并落地迁移方案。

热门文章

最新文章