手把手丨10分钟教你看懂K线图交易策略(附python绘图代码)

简介:

对于K线图,相信做交易的朋友都不陌生。本文作者用交单明了的语言解释了三日K线的交易原则,也分享了如何用python绘制K线图的方法和代码。

关于日本K线交易

据说日本人在十七世纪就已经运用技术分析的方法进行大米交易,一位名叫本间宗久的坂田大米贸易商发明了“蜡烛图”这一技术来分析每日市场上大米现货价格。现代K线图之父史蒂夫尼森认为,通过“蜡烛图”进行正式交易是自19世纪50年代开始的。

在本文,我们要重点解决以下两个问题:

1、使用Python绘制K线图

2、通过“三日K线”了解K线图的交易策略

使用Python绘制K线图

39324ce258b516c828c9278f16d6528e25af9ac1

(视频调试:笪洁琼)

我们从雅虎数据库中随机下载一些每日财经数据,用来绘制我们的K线图。在这个例子中,我们将绘制“标普500ETF”的每日K线图。你可以更改股票代码,比如“谷歌”、“苹果”、“微软 ”等,来绘制属于自己的K线图。

f826d07e2c1fed9d48ed844c300b98fcc4d5029f

我们通常用“matplotlib.pyplot库”来进行数据可视化。Matplotlib也提供包括K线图在内的少部分特殊金融绘制工具,此类绘制工具可以在“matplotlib.finance子库”中找到。

我们还将运用通过“bokeh.plotting”绘制带有默认工具集和默认可视样式的接口。它运用了Python中用于现代浏览器Web做演示的交互式可视化库。

b6d768f668f01d6e17041e2b59c4a80b8501a1cb

上述代码的输出如下所示:

1bf7ff95a1ee3be0bd5e792f1f1537ac8250bccd

我们提供的工具将帮助你记录图表走向,并通过缩放框和变焦轮将其放大或缩小。还有一个重置按钮来显示原本的实际输出,一个保存按钮让你下载浏览器中显示的图像(即缩放的图像)。

0202d848a3f8322e4682f3d3b74a2a4311bea323

通过“三日K线”来理解K线交易策略

让我们来看一个简单的每日交易策略,通过分析过去三天的K线来预测我们在第四天是“买进”还是“卖空”。我们将在第四天结束前关闭仓位,并提前确定盈利/亏损。

在第四天“看涨”(即买入)所对应的所对应的交易条件是:

规则1:最新烛台的面积必须大于前两支烛台的面积,而不管烛台的颜色如何。

规则2:第二支烛台必须是红色的。

规则3:最近一支烛台的收盘价必须高于第二支烛台的收盘价。

规则4:你会在第四天早上交易刚开始时买入,然后在市场收盘前卖出。

377400c414e617514cea631293772514493c0910

在第四天“看空”(即卖出)所对应的交易情况是:

规则1:最新K线的面积必须大于前两支烛台的面积,而不管烛台的颜色如何。

规则2:第二天的烛台必须是绿色的。

规则3:最近一支烛台的收盘价必须低于第二支烛台的收盘价。

规则4:你将在第四天早上交易刚开始时卖出,然后在市场收盘前买入。

1adcf16a3bad624c43fbfc1b8262d316d02af1c0

如果收盘价太接近,你做买卖决策时在某些地方可以不遵循规则3,但更保守的做法是遵循所有三个步骤。

如果你自己画一张K线图,并试图找到你正在考虑资产的“买进”和“卖出”信号,那将会很有趣。

此外,你还可以在网上找到各种K线图模式。你也可以参考这篇博文——《K线图交易——动量策略及案例【EXCEL模型】》

(博文链接:

https://www.quantinsti.com/blog/candlestick-trading-a-momentum-strategy-with-example-excel-model/)

你通过观察先前几个烛台的价格来做出相应的判断,进而理解动量交易策略。在你绘制的K线图中可以尝试进行这样有趣的练习。


原文发布时间为:2018-01-24

本文作者:文摘菌

本文来自云栖社区合作伙伴“大数据文摘”,了解相关信息可以关注“大数据文摘”微信公众号

相关文章
|
1天前
|
数据采集 数据可视化 数据处理
如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`)
本文介绍了如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`),加载历史数据,计算均线和其他技术指标,实现交易逻辑,记录和可视化交易结果。示例代码展示了如何根据均线交叉和价格条件进行开仓、止损和止盈操作。实际应用时需注意数据质量、交易成本和风险管理。
13 5
|
4天前
|
开发者 Python
探索Python中的装饰器:简化代码,增强功能
【10月更文挑战第22天】在Python的世界里,装饰器是一个强大的工具,它能够让我们以简洁的方式修改函数的行为,增加额外的功能而不需要重写原有代码。本文将带你了解装饰器的基本概念,并通过实例展示如何一步步构建自己的装饰器,从而让你的代码更加高效、易于维护。
|
1天前
|
算法 测试技术 开发者
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗;代码审查通过检查源代码发现潜在问题,提高代码质量和团队协作效率。本文介绍了一些实用的技巧和工具,帮助开发者提升开发效率。
6 3
|
6天前
|
开发框架 Python
探索Python中的装饰器:简化代码,增强功能
【10月更文挑战第20天】在编程的海洋中,简洁与强大是航行的双桨。Python的装饰器,这一高级特性,恰似海风助力,让代码更优雅、功能更强大。本文将带你领略装饰器的奥秘,从基础概念到实际应用,一步步深入其内涵与意义。
|
4天前
|
机器学习/深度学习 缓存 数据挖掘
Python性能优化:提升你的代码效率
【10月更文挑战第22天】 Python性能优化:提升你的代码效率
8 1
|
7天前
|
机器人 Shell Linux
【Azure Bot Service】部署Python ChatBot代码到App Service中
本文介绍了使用Python编写的ChatBot在部署到Azure App Service时遇到的问题及解决方案。主要问题是应用启动失败,错误信息为“Failed to find attribute 'app' in 'app'”。解决步骤包括:1) 修改`app.py`文件,添加`init_func`函数;2) 配置`config.py`,添加与Azure Bot Service认证相关的配置项;3) 设置App Service的启动命令为`python3 -m aiohttp.web -H 0.0.0.0 -P 8000 app:init_func`。
|
11天前
|
人工智能 IDE 测试技术
使用通义灵码提升Python开发效率:从熟悉代码到实现需求的全流程体验
作为一名Python开发者,我最近开始使用通义灵码作为开发辅助工具。它显著提高了我的工作效率,特别是在理解和修改复杂代码逻辑方面。通过AI编码助手,我能够在短时间内快速上手新项目,实现新需求,并进行代码优化,整体效率提升了60%以上。通义灵码不仅加快了代码生成速度,还增强了代码的健壮性和稳定性。
|
10天前
|
数据处理 开发者 Python
Python中的列表推导式:一种优雅的代码简化技巧####
【10月更文挑战第15天】 本文将深入浅出地探讨Python中列表推导式的使用,这是一种强大且简洁的语法结构,用于从现有列表生成新列表。通过具体示例和对比传统循环方法,我们将揭示列表推导式如何提高代码的可读性和执行效率,同时保持语言的简洁性。无论你是Python初学者还是有经验的开发者,掌握这一技能都将使你的编程之旅更加顺畅。 ####
16 1
|
13天前
|
缓存 程序员 开发者
探索Python中的装饰器:一种优雅的代码增强技巧
【10月更文挑战第13天】 在本文中,我们将深入探讨Python中的装饰器,这是一种强大的工具,它允许程序员以简洁而高效的方式扩展或修改函数和类的行为。通过具体示例,我们将展示如何利用装饰器来优化代码结构,提高开发效率,并实现如日志记录、性能计时等常见功能。本文旨在为读者提供一个关于Python装饰器的全面理解,从而能够在他们的项目中灵活运用这一技术。
20 1
|
4天前
|
缓存 算法 数据处理
Python性能优化:提升代码效率与速度的秘诀
【10月更文挑战第22天】Python性能优化:提升代码效率与速度的秘诀
8 0