python中threading模块详解(一)

简介: python中threading模块详解(一) 来源 http://blog.chinaunix.net/uid-27571599-id-3484048.htmlthreading提供了一个比thread模块更高层的API来提供线程的并发性。

python中threading模块详解(一) 

来源 http://blog.chinaunix.net/uid-27571599-id-3484048.html

threading提供了一个比thread模块更高层的API来提供线程的并发性。这些线程并发运行并共享内存。 

        下面来看threading模块的具体用法: 

 

     一、Thread的使用 目标函数可以实例化一个Thread对象,每个Thread对象代表着一个线程,可以通过start()方法,开始运行。

     这里对使用多线程并发,和不适用多线程并发做了一个比较:

首先是不使用多线程的操作:

代码如下:

 

 
1
2
3
4
5
6
7
8
9
10
11
12
#!/usr/bin/python
#compare for multi threads
import time
 
def worker():
     print "worker"
     time.sleep( 1 )
     return
 
if __name__ = = "__main__" :
     for i in xrange ( 5 ):
         worker()

 

执行结果如下:

   

下面是使用多线程并发的操作:

代码如下:

 

 
1
2
3
4
5
6
7
8
9
10
11
12
#!/usr/bin/python
import threading
import time
 
def worker():
     print "worker"
     time.sleep( 1 )
     return
 
for i in xrange ( 5 ):
     t = threading.Thread(target = worker)
     t.start()

 

可以明显看出使用了多线程并发的操作,花费时间要短的很多。

 

二、threading.activeCount()的使用,此方法返回当前进程中线程的个数。返回的个数中包含主线程。

代码如下:

 

 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
#!/usr/bin/python
#current's number of threads
import threading
import time
 
def worker():
     print "test"
     time.sleep( 1 )
 
for i in xrange ( 5 ):
     t = threading.Thread(target = worker)
     t.start()
 
print "current has %d threads" % (threading.activeCount() - 1 )

 

 

三、threading.enumerate()的使用。此方法返回当前运行中的Thread对象列表。

代码如下:

 

 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#!/usr/bin/python
#test the variable threading.enumerate()
import threading
import time
 
def worker():
     print "test"
     time.sleep( 2 )
 
threads = []
for i in xrange ( 5 ):
     t = threading.Thread(target = worker)
     threads.append(t)
     t.start()
 
for item in threading. enumerate ():
     print item
 
print
 
for item in threads:
     print item

 

 

四、threading.setDaemon()的使用。设置后台进程。

代码如下:

 

 
1
2
3
4
5
6
7
8
9
10
11
12
13
#!/usr/bin/python
#create a daemon
import threading
import time
 
def worker():
     time.sleep( 3 )
     print "worker"
 
t = threading.Thread(target = worker)
t.setDaemon( True )
t.start()
print "haha"

 

可以看出worker()方法中的打印操作并没有显示出来,说明已经成为后台进程。

 

目录
相关文章
|
21天前
|
SQL 关系型数据库 数据库
Python SQLAlchemy模块:从入门到实战的数据库操作指南
免费提供Python+PyCharm编程环境,结合SQLAlchemy ORM框架详解数据库开发。涵盖连接配置、模型定义、CRUD操作、事务控制及Alembic迁移工具,以电商订单系统为例,深入讲解高并发场景下的性能优化与最佳实践,助你高效构建数据驱动应用。
205 7
|
1月前
|
监控 安全 程序员
Python日志模块配置:从print到logging的优雅升级指南
从 `print` 到 `logging` 是 Python 开发的必经之路。`print` 调试简单却难维护,日志混乱、无法分级、缺乏上下文;而 `logging` 支持级别控制、多输出、结构化记录,助力项目可维护性升级。本文详解痛点、优势、迁移方案与最佳实践,助你构建专业日志系统,让程序“有记忆”。
190 0
|
25天前
|
JSON 算法 API
Python中的json模块:从基础到进阶的实用指南
本文深入解析Python内置json模块的使用,涵盖序列化与反序列化核心函数、参数配置、中文处理、自定义对象转换及异常处理,并介绍性能优化与第三方库扩展,助你高效实现JSON数据交互。(238字)
225 4
|
22天前
|
Java 调度 数据库
Python threading模块:多线程编程的实战指南
本文深入讲解Python多线程编程,涵盖threading模块的核心用法:线程创建、生命周期、同步机制(锁、信号量、条件变量)、线程通信(队列)、守护线程与线程池应用。结合实战案例,如多线程下载器,帮助开发者提升程序并发性能,适用于I/O密集型任务处理。
182 0
|
23天前
|
XML JSON 数据处理
超越JSON:Python结构化数据处理模块全解析
本文深入解析Python中12个核心数据处理模块,涵盖csv、pandas、pickle、shelve、struct、configparser、xml、numpy、array、sqlite3和msgpack,覆盖表格处理、序列化、配置管理、科学计算等六大场景,结合真实案例与决策树,助你高效应对各类数据挑战。(238字)
122 0
|
2月前
|
安全 大数据 程序员
Python operator模块的methodcaller:一行代码搞定对象方法调用的黑科技
`operator.methodcaller`是Python中处理对象方法调用的高效工具,替代冗长Lambda,提升代码可读性与性能。适用于数据过滤、排序、转换等场景,支持参数传递与链式调用,是函数式编程的隐藏利器。
106 4
|
2月前
|
存储 数据库 开发者
Python SQLite模块:轻量级数据库的实战指南
本文深入讲解Python内置sqlite3模块的实战应用,涵盖数据库连接、CRUD操作、事务管理、性能优化及高级特性,结合完整案例,助你快速掌握SQLite在小型项目中的高效使用,是Python开发者必备的轻量级数据库指南。
235 0
|
3月前
|
存储 安全 数据处理
Python 内置模块 collections 详解
`collections` 是 Python 内置模块,提供多种高效数据类型,如 `namedtuple`、`deque`、`Counter` 等,帮助开发者优化数据处理流程,提升代码可读性与性能,适用于复杂数据结构管理与高效操作场景。
261 0
|
4月前
|
数据安全/隐私保护 Python
抖音私信脚本app,协议私信群发工具,抖音python私信模块
这个实现包含三个主要模块:抖音私信核心功能类、辅助工具类和主程序入口。核心功能包括登录
|
7月前
|
Python
Python教程:os 与 sys 模块详细用法
os 模块用于与操作系统交互,主要涉及夹操作、路径操作和其他操作。例如,`os.rename()` 重命名文件,`os.mkdir()` 创建文件夹,`os.path.abspath()` 获取文件绝对路径等。sys 模块则用于与 Python 解释器交互,常用功能如 `sys.path` 查看模块搜索路径,`sys.platform` 检测操作系统等。这些模块提供了丰富的工具,便于开发中处理系统和文件相关任务。
311 14

推荐镜像

更多