Python标准库-string模块《未完待续》

简介:
>>> import string
>>> s='hello rollen , how are you '
>>> string.capwords(s)
'Hello Rollen , How Are You'          #每个单词的首字母大写
>>> string.split(s)
['hello', 'rollen', ',', 'how', 'are', 'you']     #划分为列表 默认是以空格划分
>>> s='1+2+3'
>>> string.split(s,'+')                 #以‘+’号进行划分
['1', '2', '3']

maketrans()方法会创建一个能够被translate()使用的翻译表,可以用来改变一些列的字符,这个方法比调用replace()更加的高效。

例如下面的例子将字符串s中的‘a,改为1,‘b’改为2,‘c’改为3’:

>>> leet=string.maketrans('abc','123')
>>> s='abcdef'
>>> s.translate(leet)
'123def'
>>> leet=string.maketrans('abc','123')
>>> s='aAaBcC'
>>> s.translate(leet)
'1A1B3C'

string中的template的小例子:

import string
values = { 'var':'foo' }
t = string.Template("""
Variable : $var
Escape : $$
Variable in text: ${var}iable
""")
print 'TEMPLATE:', t.substitute(values)
s = """
Variable : %(var)s
Escape : %%
Variable in text: %(var)siable
"""
print 'INTERPOLATION:', s % values

上面的例子的输出为:

TEMPLATE: 
Variable : foo 
Escape : $ 
Variable in text: fooiable

INTERPOLATION: 
Variable : foo 
Escape : % 
Variable in text: fooiable

但是上面的substitute如果提供的参数不足的时候,会出现异常,我们可以使用更加安全的办法,如下:

import string
values = { 'var':'foo' }
t = string.Template("$var is here but $missing is not provided")
try:
    print 'substitute() :', t.substitute(values)
except KeyError, err:
    print 'ERROR:', str(err)
print 'safe_substitute():', t.safe_substitute(values)

上面例子的输出为:

substitute() : ERROR: 'missing' 
safe_substitute(): foo is here but $missing is not provided

 

下面来看一些template的高级用法:

import string
template_text = '''
Delimiter : %%
Replaced : %with_underscore
Ignored : %notunderscored
'''
d = { 'with_underscore':'replaced',
'notunderscored':'not replaced',
}
class MyTemplate(string.Template):
    delimiter = '%'
    idpattern = '[a-z]+_[a-z]+'
t = MyTemplate(template_text)
print 'Modified ID pattern:'
print t.safe_substitute(d)

输出为:

Modified ID pattern:

Delimiter : % 
Replaced : replaced 
Ignored : %notunderscored

在这个例子中,我们通过自定义属性delimiter 和 idpattern自定了规则,我们使用%替代了美元符号$,而且我们定义的替换规则是被替换的变量名要包含下环线,所以在上面的例子中,只替换了一个。

 

import textwrap

sample_text = '''
The textwrap module can be used to format text for output in
situations where pretty-printing is desired. It offers
programmatic functionality similar to the paragraph wrapping
or filling features found in many text editors.
'''

print 'No dedent:\n'
print textwrap.fill(sample_text, width=50)



输出为:

No dedent:

The textwrap module can be used to format text 
for output in situations where pretty-printing is 
desired. It offers programmatic functionality 
similar to the paragraph wrapping or filling 
features found in many text editors.

上面的例子设置宽度为50,下面的例子我们来移除缩进

import textwrap

sample_text = '''
The textwrap module can be used to format text for output in
situations where pretty-printing is desired. It offers
programmatic functionality similar to the paragraph wrapping
or filling features found in many text editors.
'''

dedented_text = textwrap.dedent(sample_text)
print 'Dedented:'
print dedented_text




Dedented:

The textwrap module can be used to format text for output in 
situations where pretty-printing is desired. It offers 
programmatic functionality similar to the paragraph wrapping 
or filling features found in many text editors.

Hit any key to close this window...

下面来一个对比:

import textwrap

sample_text = '''
The textwrap module can be used to format text for output in
situations where pretty-printing is desired. It offers
programmatic functionality similar to the paragraph wrapping
or filling features found in many text editors.
'''

dedented_text = textwrap.dedent(sample_text).strip()
for width in [ 45, 70 ]:
    print '%d Columns:\n' % width
    print textwrap.fill(dedented_text, width=width)
    print





上面的例子的输出如下:

45 Columns:

The textwrap module can be used to format
text for output in situations where pretty-
printing is desired. It offers programmatic
functionality similar to the paragraph
wrapping or filling features found in many
text editors.

70 Columns:

The textwrap module can be used to format text for output in
situations where pretty-printing is desired. It offers programmatic
functionality similar to the paragraph wrapping or filling features
found in many text editors.

Hit any key to close this window...

我们也可以设置首行和剩余的行:

import textwrap

sample_text = '''
The textwrap module can be used to format text for output in
situations where pretty-printing is desired. It offers
programmatic functionality similar to the paragraph wrapping
or filling features found in many text editors.
'''

dedented_text = textwrap.dedent(sample_text).strip()
print textwrap.fill(dedented_text,
initial_indent=' ',
subsequent_indent=' ' * 4,
width=50,
)

输出为:

The textwrap module can be used to format text 
    for output in situations where pretty-printing 
    is desired. It offers programmatic 
    functionality similar to the paragraph 
    wrapping or filling features found in many 
    text editors.

上面的例子设置首行缩进1个空格,其余行缩进4个空格

 

在文本中查找:

import re
pattern = 'this'
text = 'Does this text match the pattern?'
match = re.search(pattern, text)
s = match.start()
e = match.end()
print 'Found "%s"\nin "%s"\nfrom %d to %d ("%s")' % \
(match.re.pattern, match.string, s, e, text[s:e])

start和end返回匹配的位置

输出如下:

Found "this" 
in "Does this text match the pattern?" 
from 5 to 9 ("this")

 

re includes module-level functions for working with regular expressions as text strings, 
but it is more efficient to compile the expressions a program uses frequently. The compile() function converts an expression string into a RegexObject.

import re
# Precompile the patterns
regexes = [ re.compile(p) for p in [ 'this', 'that' ]]
text = 'Does this text match the pattern?'
print 'Text: %r\n' % text
for regex in regexes:
    print 'Seeking "%s" ->' % regex.pattern,
    if regex.search(text):
        print 'match!'
    else:
       print 'no match'

Text: 'Does this text match the pattern?'

Seeking "this" -> match! 
Seeking "that" -> no match 

The module-level functions maintain a cache of compiled expressions. However, 
the size of the cache is limited, and using compiled expressions directly avoids the 
cache lookup overhead. Another advantage of using compiled expressions is that by 
precompiling all expressions when the module is loaded, the compilation work is shifted 
to application start time, instead of to a point when the program may be responding to 
a user action.

 

So far, the example patterns have all used search() to look for single instances of 
literal text strings. The findall() function returns all substrings of the input that 
match the pattern without overlapping.

import re
text = 'abbaaabbbbaaaaa'
pattern = 'ab'
for match in re.findall(pattern, text):
    print 'Found "%s"' % match

Found "ab" 
Found "ab" 

finditer() returns an iterator that produces Match instances instead of the 
strings returned by findall().

import re
text = 'abbaaabbbbaaaaa'
pattern = 'ab'
for match in re.finditer(pattern, text):
    s = match.start()
    e = match.end()
    print 'Found "%s" at %d:%d' % (text[s:e], s, e)

Found "ab" at 0:2 
Found "ab" at 5:7

目录
相关文章
|
3月前
|
SQL 关系型数据库 数据库
Python SQLAlchemy模块:从入门到实战的数据库操作指南
免费提供Python+PyCharm编程环境,结合SQLAlchemy ORM框架详解数据库开发。涵盖连接配置、模型定义、CRUD操作、事务控制及Alembic迁移工具,以电商订单系统为例,深入讲解高并发场景下的性能优化与最佳实践,助你高效构建数据驱动应用。
479 7
|
3月前
|
监控 安全 程序员
Python日志模块配置:从print到logging的优雅升级指南
从 `print` 到 `logging` 是 Python 开发的必经之路。`print` 调试简单却难维护,日志混乱、无法分级、缺乏上下文;而 `logging` 支持级别控制、多输出、结构化记录,助力项目可维护性升级。本文详解痛点、优势、迁移方案与最佳实践,助你构建专业日志系统,让程序“有记忆”。
327 0
|
3月前
|
JSON 算法 API
Python中的json模块:从基础到进阶的实用指南
本文深入解析Python内置json模块的使用,涵盖序列化与反序列化核心函数、参数配置、中文处理、自定义对象转换及异常处理,并介绍性能优化与第三方库扩展,助你高效实现JSON数据交互。(238字)
445 4
|
开发者 Python
如何在Python中管理模块和包的依赖关系?
在实际开发中,通常会结合多种方法来管理模块和包的依赖关系,以确保项目的顺利进行和可维护性。同时,要及时更新和解决依赖冲突等问题,以保证代码的稳定性和可靠性
596 159
|
3月前
|
Java 调度 数据库
Python threading模块:多线程编程的实战指南
本文深入讲解Python多线程编程,涵盖threading模块的核心用法:线程创建、生命周期、同步机制(锁、信号量、条件变量)、线程通信(队列)、守护线程与线程池应用。结合实战案例,如多线程下载器,帮助开发者提升程序并发性能,适用于I/O密集型任务处理。
385 0
|
3月前
|
XML JSON 数据处理
超越JSON:Python结构化数据处理模块全解析
本文深入解析Python中12个核心数据处理模块,涵盖csv、pandas、pickle、shelve、struct、configparser、xml、numpy、array、sqlite3和msgpack,覆盖表格处理、序列化、配置管理、科学计算等六大场景,结合真实案例与决策树,助你高效应对各类数据挑战。(238字)
255 0
|
4月前
|
安全 大数据 程序员
Python operator模块的methodcaller:一行代码搞定对象方法调用的黑科技
`operator.methodcaller`是Python中处理对象方法调用的高效工具,替代冗长Lambda,提升代码可读性与性能。适用于数据过滤、排序、转换等场景,支持参数传递与链式调用,是函数式编程的隐藏利器。
173 4
|
4月前
|
存储 数据库 开发者
Python SQLite模块:轻量级数据库的实战指南
本文深入讲解Python内置sqlite3模块的实战应用,涵盖数据库连接、CRUD操作、事务管理、性能优化及高级特性,结合完整案例,助你快速掌握SQLite在小型项目中的高效使用,是Python开发者必备的轻量级数据库指南。
422 0
|
5月前
|
存储 安全 数据处理
Python 内置模块 collections 详解
`collections` 是 Python 内置模块,提供多种高效数据类型,如 `namedtuple`、`deque`、`Counter` 等,帮助开发者优化数据处理流程,提升代码可读性与性能,适用于复杂数据结构管理与高效操作场景。
400 0
|
6月前
|
数据安全/隐私保护 Python
抖音私信脚本app,协议私信群发工具,抖音python私信模块
这个实现包含三个主要模块:抖音私信核心功能类、辅助工具类和主程序入口。核心功能包括登录

推荐镜像

更多