Python之sklearn2pmml:sklearn2pmml库函数的简介、安装、使用方法之详细攻略daiding

简介: Python之sklearn2pmml:sklearn2pmml库函数的简介、安装、使用方法之详细攻略daiding

sklearn2pmml库函数的简介


       sklearn2pmml是用于将Scikit学习管道转换为PMML的Python库。这个库是JPMML-SkLearn命令行应用程序的一个瘦包装。有关支持的评估器和转换器类型的列表,请参考JPMML-SkLearn特性。



1、一个典型的工作流总结


创建一个PMMLPipeline对象,并像往常一样用管道步骤填充它。类sklearn2pmml.pipeline。PMMLPipeline扩展了sklearn.pipeline类。管道具有以下功能:

如果PMMLPipeline。fit(X, y)方法是用panda调用的。DataFrame或熊猫。Series对象作为X参数,然后它的列名用作特性名。否则,特征名称默认为“x1”、“x2”,..“x {number_of_features}”。

如果PMMLPipeline。fit(X, y)方法是用panda调用的。Series对象作为y参数,然后将其名称用作目标名称(对于监督模型)。否则,目标名称默认为“y”。

像往常一样安装和验证pipeline。

可选地,通过调用PMMLPipeline.verify(X)方法来计算验证数据并将其嵌入到PMMLPipeline对象中,该方法使用的是一个较小但有代表性的训练数据子集。

通过调用实用程序方法sklearn2pmml,将PMMLPipeline对象转换为本地文件系统中的PMML文件。pmml_destination_path sklearn2pmml(pipeline)。



sklearn2pmml库函数的安装


pip install sklearn2pmml

pip install --user -i https://pypi.tuna.tsinghua.edu.cn/simple sklearn2pmml


image.png





sklearn2pmml库函数的使用方法


1、一个简单的鸢尾物种分类决策树模型


import pandas

iris_df = pandas.read_csv("Iris.csv")

iris_X = iris_df[iris_df.columns.difference(["Species"])]

iris_y = iris_df["Species"]

from sklearn.tree import DecisionTreeClassifier

from sklearn2pmml.pipeline import PMMLPipeline

pipeline = PMMLPipeline([

("classifier", DecisionTreeClassifier())

])

pipeline.fit(iris_X, iris_y)

from sklearn2pmml import sklearn2pmml

sklearn2pmml(pipeline, "DecisionTreeIris.pmml", with_repr = True)


2、更精细的逻辑回归模型


import pandas

iris_df = pandas.read_csv("Iris.csv")

iris_X = iris_df[iris_df.columns.difference(["Species"])]

iris_y = iris_df["Species"]

from sklearn_pandas import DataFrameMapper

from sklearn.decomposition import PCA

from sklearn.feature_selection import SelectKBest

from sklearn.impute import SimpleImputer

from sklearn.linear_model import LogisticRegression

from sklearn2pmml.decoration import ContinuousDomain

from sklearn2pmml.pipeline import PMMLPipeline

pipeline = PMMLPipeline([

("mapper", DataFrameMapper([

 (["Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width"], [ContinuousDomain(), SimpleImputer()])

])),

("pca", PCA(n_components = 3)),

("selector", SelectKBest(k = 2)),

("classifier", LogisticRegression(multi_class = "ovr"))

])

pipeline.fit(iris_X, iris_y)

pipeline.verify(iris_X.sample(n = 15))

from sklearn2pmml import sklearn2pmml

sklearn2pmml(pipeline, "LogisticRegressionIris.pmml", with_repr = True)




相关文章
|
28天前
|
存储 人工智能 测试技术
如何使用LangChain的Python库结合DeepSeek进行多轮次对话?
本文介绍如何使用LangChain结合DeepSeek实现多轮对话,测开人员可借此自动生成测试用例,提升自动化测试效率。
241 125
如何使用LangChain的Python库结合DeepSeek进行多轮次对话?
|
21天前
|
监控 数据可视化 数据挖掘
Python Rich库使用指南:打造更美观的命令行应用
Rich库是Python的终端美化利器,支持彩色文本、智能表格、动态进度条和语法高亮,大幅提升命令行应用的可视化效果与用户体验。
75 0
|
10天前
|
设计模式 缓存 监控
Python装饰器:优雅增强函数功能
Python装饰器:优雅增强函数功能
211 101
|
17天前
|
缓存 测试技术 Python
Python装饰器:优雅地增强函数功能
Python装饰器:优雅地增强函数功能
165 99
|
17天前
|
存储 缓存 测试技术
Python装饰器:优雅地增强函数功能
Python装饰器:优雅地增强函数功能
146 98
|
22天前
|
缓存 Python
Python中的装饰器:优雅地增强函数功能
Python中的装饰器:优雅地增强函数功能
|
Linux 开发工具 C语言
30天python速成-第一天(python简介及下载安装)
30天python速成-第一天(python简介及下载安装)
|
Linux 开发者 iOS开发
|
开发框架 数据可视化 Java
Python Qt GUI设计简介、环境下载和安装(基础篇—1)
Python Qt GUI设计简介、环境下载和安装(基础篇—1)
Python Qt GUI设计简介、环境下载和安装(基础篇—1)
|
SQL Oracle 数据可视化
Indigo | Indigo(Python)简介、安装与入门
Indigo | Indigo(Python)简介、安装与入门
604 0
Indigo | Indigo(Python)简介、安装与入门

推荐镜像

更多