Python之sklearn2pmml:sklearn2pmml库函数的简介、安装、使用方法之详细攻略daiding

简介: Python之sklearn2pmml:sklearn2pmml库函数的简介、安装、使用方法之详细攻略daiding

sklearn2pmml库函数的简介


       sklearn2pmml是用于将Scikit学习管道转换为PMML的Python库。这个库是JPMML-SkLearn命令行应用程序的一个瘦包装。有关支持的评估器和转换器类型的列表,请参考JPMML-SkLearn特性。



1、一个典型的工作流总结


创建一个PMMLPipeline对象,并像往常一样用管道步骤填充它。类sklearn2pmml.pipeline。PMMLPipeline扩展了sklearn.pipeline类。管道具有以下功能:

如果PMMLPipeline。fit(X, y)方法是用panda调用的。DataFrame或熊猫。Series对象作为X参数,然后它的列名用作特性名。否则,特征名称默认为“x1”、“x2”,..“x {number_of_features}”。

如果PMMLPipeline。fit(X, y)方法是用panda调用的。Series对象作为y参数,然后将其名称用作目标名称(对于监督模型)。否则,目标名称默认为“y”。

像往常一样安装和验证pipeline。

可选地,通过调用PMMLPipeline.verify(X)方法来计算验证数据并将其嵌入到PMMLPipeline对象中,该方法使用的是一个较小但有代表性的训练数据子集。

通过调用实用程序方法sklearn2pmml,将PMMLPipeline对象转换为本地文件系统中的PMML文件。pmml_destination_path sklearn2pmml(pipeline)。



sklearn2pmml库函数的安装


pip install sklearn2pmml

pip install --user -i https://pypi.tuna.tsinghua.edu.cn/simple sklearn2pmml


image.png





sklearn2pmml库函数的使用方法


1、一个简单的鸢尾物种分类决策树模型


import pandas

iris_df = pandas.read_csv("Iris.csv")

iris_X = iris_df[iris_df.columns.difference(["Species"])]

iris_y = iris_df["Species"]

from sklearn.tree import DecisionTreeClassifier

from sklearn2pmml.pipeline import PMMLPipeline

pipeline = PMMLPipeline([

("classifier", DecisionTreeClassifier())

])

pipeline.fit(iris_X, iris_y)

from sklearn2pmml import sklearn2pmml

sklearn2pmml(pipeline, "DecisionTreeIris.pmml", with_repr = True)


2、更精细的逻辑回归模型


import pandas

iris_df = pandas.read_csv("Iris.csv")

iris_X = iris_df[iris_df.columns.difference(["Species"])]

iris_y = iris_df["Species"]

from sklearn_pandas import DataFrameMapper

from sklearn.decomposition import PCA

from sklearn.feature_selection import SelectKBest

from sklearn.impute import SimpleImputer

from sklearn.linear_model import LogisticRegression

from sklearn2pmml.decoration import ContinuousDomain

from sklearn2pmml.pipeline import PMMLPipeline

pipeline = PMMLPipeline([

("mapper", DataFrameMapper([

 (["Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width"], [ContinuousDomain(), SimpleImputer()])

])),

("pca", PCA(n_components = 3)),

("selector", SelectKBest(k = 2)),

("classifier", LogisticRegression(multi_class = "ovr"))

])

pipeline.fit(iris_X, iris_y)

pipeline.verify(iris_X.sample(n = 15))

from sklearn2pmml import sklearn2pmml

sklearn2pmml(pipeline, "LogisticRegressionIris.pmml", with_repr = True)




相关文章
|
1月前
|
机器学习/深度学习 存储 数据挖掘
Python图像处理实用指南:PIL库的多样化应用
本文介绍Python中PIL库在图像处理中的多样化应用,涵盖裁剪、调整大小、旋转、模糊、锐化、亮度和对比度调整、翻转、压缩及添加滤镜等操作。通过具体代码示例,展示如何轻松实现这些功能,帮助读者掌握高效图像处理技术,适用于图片美化、数据分析及机器学习等领域。
73 20
|
4天前
|
数据采集 JavaScript Android开发
【02】仿站技术之python技术,看完学会再也不用去购买收费工具了-本次找了小影-感觉页面很好看-本次是爬取vue需要用到Puppeteer库用node.js扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
【02】仿站技术之python技术,看完学会再也不用去购买收费工具了-本次找了小影-感觉页面很好看-本次是爬取vue需要用到Puppeteer库用node.js扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
29 7
【02】仿站技术之python技术,看完学会再也不用去购买收费工具了-本次找了小影-感觉页面很好看-本次是爬取vue需要用到Puppeteer库用node.js扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
|
28天前
|
测试技术 Python
【03】做一个精美的打飞机小游戏,规划游戏项目目录-分门别类所有的资源-库-类-逻辑-打包为可玩的exe-练习python打包为可执行exe-优雅草卓伊凡-持续更新-分享源代码和游戏包供游玩-1.0.2版本
【03】做一个精美的打飞机小游戏,规划游戏项目目录-分门别类所有的资源-库-类-逻辑-打包为可玩的exe-练习python打包为可执行exe-优雅草卓伊凡-持续更新-分享源代码和游戏包供游玩-1.0.2版本
106 31
【03】做一个精美的打飞机小游戏,规划游戏项目目录-分门别类所有的资源-库-类-逻辑-打包为可玩的exe-练习python打包为可执行exe-优雅草卓伊凡-持续更新-分享源代码和游戏包供游玩-1.0.2版本
|
2月前
|
XML JSON 数据库
Python的标准库
Python的标准库
185 77
|
9月前
|
Linux 开发工具 C语言
30天python速成-第一天(python简介及下载安装)
30天python速成-第一天(python简介及下载安装)
|
9月前
|
Linux 开发者 iOS开发
|
开发框架 数据可视化 Java
Python Qt GUI设计简介、环境下载和安装(基础篇—1)
Python Qt GUI设计简介、环境下载和安装(基础篇—1)
Python Qt GUI设计简介、环境下载和安装(基础篇—1)
|
SQL Oracle 数据可视化
Indigo | Indigo(Python)简介、安装与入门
Indigo | Indigo(Python)简介、安装与入门
475 0
Indigo | Indigo(Python)简介、安装与入门
|
机器学习/深度学习 SQL 自然语言处理
Python:pmml格式文件的简介、安装、使用方法(利用python将机器学习模型转为Java常用的pmml格式文件)之详细攻略
Python:pmml格式文件的简介、安装、使用方法(利用python将机器学习模型转为Java常用的pmml格式文件)之详细攻略
|
JSON NoSQL 数据挖掘
Python之tushare:tushare库的简介、安装、使用方法之详细攻略
Python之tushare:tushare库的简介、安装、使用方法之详细攻略
Python之tushare:tushare库的简介、安装、使用方法之详细攻略

热门文章

最新文章

推荐镜像

更多