开发者社区> 长征2号> 正文

Recognizing and Learning Object Categories --- 连接放送

简介:
+关注继续查看

http://people.csail.mit.edu/torralba/shortCourseRLOC/

 

This course reviews current methods for object category recognition, dividing them into four main areas: bag of words models; parts and structure models; discriminative methods and combined recognition and segmentation. The emphasis will be on the important general concepts rather than in depth coverage of contemporary papers. The course is accompanied by extensive Matlab demos. 

ICCV 2009 Recognizing and Learning Object Categories: Year 2009

  • Introduction (.pptx.pdf)
  • Part 1: Single object classes 
    • Bag of words models, Part-based models, and Discriminative models (.pptx)
    • Detecting single objects in context (.pptx)
    • 3D object models (.pptx)
  • Part 2: Multiple object categories 
    • Recognizing a large number of object classes (.pptx)
    • Recognizing multiple objects in an image. Sharing and context (.pptx)
    • Objects and annotations (.pptx)
  • Part 4: Summary and datasets (.pptx)

Slides CVPR 2007

Slides ICCV 2005


Matlab code

This set of three demos illustrates the concepts behind several approaches for object recognition. The code consists of Matlab scripts (which should run under both Windows and Linux). The code is for teaching/research purposes only. 

Bag of words models A simple parts and structure model A simple detector with boosting


Datasets
These are pointers to the datasets used in the demos:

  • Caltech datasets
  • LabelMe dataset and annotation tool
  • PASCAL collection 



    Acknowledgments

    This work was partially supported by the National Science Foundation Grant No. 0413232. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.


本文转自einyboy博客园博客,原文链接:http://www.cnblogs.com/einyboy/archive/2012/07/02/2573210.html

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
《Fighting Cybercrime A Joint Task Force of Real-Time Data and Human Analytics》电子版地址
Fighting Cybercrime: A Joint Task Force of Real-Time Data and Human Analytics
12 0
Google Earth Engine(GEE)——下载矢量数据过程中出现Property joinedWaterFeature has type Feature错误
Google Earth Engine(GEE)——下载矢量数据过程中出现Property joinedWaterFeature has type Feature错误
41 0
cs224w(图机器学习)2021冬季课程学习笔记6 Message Passing and Node Classification
cs224w(图机器学习)2021冬季课程学习笔记6 Message Passing and Node Classification
58 0
Dataset:Big Mart Sales数据集的简介、下载、案例应用之详细攻略
Dataset:Big Mart Sales数据集的简介、下载、案例应用之详细攻略
124 0
Hands-on data analysis 第一章
Hands-on data analysis 第一章
50 0
论文阅读:RRPN:RADAR REGION PROPOSAL NETWORK FOR OBJECT DETECTION IN AUTONOMOUS VEHICLES
论文阅读:RRPN:RADAR REGION PROPOSAL NETWORK FOR OBJECT DETECTION IN AUTONOMOUS VEHICLES
99 0
PAT (Advanced Level) Practice - 1044 Shopping in Mars(25 分)
PAT (Advanced Level) Practice - 1044 Shopping in Mars(25 分)
52 0
第四周编程作业(一)-Building your Deep Neural Network: Step by Step(三)
第四周编程作业(一)-Building your Deep Neural Network: Step by Step(三)
94 0
第四周编程作业(一)-Building your Deep Neural Network: Step by Step(一)
第四周编程作业(一)-Building your Deep Neural Network: Step by Step(一)
150 0
+关注
长征2号
文章
问答
视频
文章排行榜
最热
最新
相关电子书
更多
Mobile Growth 的方法和实践
立即下载
Write Graph Algorithms Like a Boss
立即下载
低代码开发师(初级)实战教程
立即下载