谈谈大数据存储与备份的核心——技术与创新

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 根据IDC研究报告未来10年全球数据量将以40%多的增长速度呈直线上升趋势2020年全球的数据量将达到35ZB35,000,000PB是2010年的40倍。换句通俗的话说也就是每过1分钟全世界就有1820TB的新数据产生。

根据IDC研究报告,未来10年全球数据量将以40%多的增长速度呈直线上升趋势,2020年,全球的数据量将达到35ZB35,000,000PB),是2010年的40倍。换句通俗的话说,也就是每过1分钟,全世界就有1820TB的新数据产生。

657d497560ef5e9e75e39f44e3a7c0dd5e844191

 

数据量的急速膨胀

随着互联网、移动互联网、物联网等技术的发展,一个城市的数据生产在飞速的发展,信息就成了一个企业的战略子站,市场竞争和政策的管制要求越来越多的数据被长期的保存。不仅仅是企业需要保存数据,政府也越来越开始注重各类信息数据的收集、保存和备份,从而进行用户行为分析、市场的研究。


大数据的分析模式

与传统数据分析相比,用于大数据分析的数据集合主要有2点区别:第一,传统模式大都采用通过采样的方式获得部分数据用于分析,而大数据可以对收集到的所有的数据进行分析,分析用的数据源由采样数据扩展至了全部的数据;第二,传统分析更加关注数据源与分析结果间的因果关系,大数据分析时数据源与分析结果不再只是因果的关系,基于有相关关系的数据源同样可以分析并且预测出正确的结果。

d832f61ef6649b1674a96a9c9e48c09dcff8f8ee

 

大数据的分析给传统的数据分析和处理技术带来了很多挑战。云计算和开源技术的发展推动大数据落地,分布式存储、非关系型数据库和并行处理技术逐渐成为大数据应用实施过程当中的关键技术。开元Hadoop为大数据提供了各个层面的技术支持,这也是当前形势下应用最广泛、关注度最高的大数据项目。Hadoop几乎已经成为了大数据处理的事实标准。f5f08cbe2c104bedf650ea57f28fc15cd34df8cc

 

大数据的存储形式

谈到大数据的分析,就必不可少的在这之前,需要对大数据进行存储和备份。大数据的存储需要满足海量的存储、安全存储和快读读取的要求,目前应用较广的主要有Hadoop分布式文件系统。据江苏爱科赛尔云数据的责任人表示:“作为数据服务公司,技术是最根本的,而目前首要的就是把重心放在原始数据的高压缩和去重技术上。”另外,针对大数据的存储和备份,一些市场上主要的需求和建议在今年也被大家开始提出:

29f119835fb007e24f69b31fcfd1af5b05942e68

 

1、 大数据存储和备份系统对备份的文件格式应该采取多样化的设定,即无论何种形式的文件,均可以使用软件进行存储和备份;

2、大数据存储和备份在执行任务的时候,在LANWAN时都应该达到最低网速,及时在网速较慢的情况下(256kbps)也能进行快速的备份和上载。

3、针对国内情况,对于虚拟机本身的备份和恢复应该开始重视起来;

4、在软件报错的时候,应该能够进行自我的修复,而不是当软件报错的时候就导致企业无法进行顺利的存储和备份;

5、增加FailoverFailback的失败自动切换和失败自动恢复的模式,这样一来就可以似的操作智能化,在遇到错误的时候能够自动重新选择其它线路,而不是一味的停在原地。

 

 

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
9天前
|
存储 机器学习/深度学习 SQL
大数据处理与分析技术
大数据处理与分析技术
41 2
|
28天前
|
存储 分布式计算 数据可视化
大数据常用技术与工具
【10月更文挑战第16天】
100 4
|
11天前
|
存储 分布式计算 NoSQL
【赵渝强老师】大数据技术的理论基础
本文介绍了大数据平台的核心思想,包括Google的三篇重要论文:Google文件系统(GFS)、MapReduce分布式计算模型和BigTable大表。这些论文奠定了大数据生态圈的技术基础,进而发展出了Hadoop、Spark和Flink等生态系统。文章详细解释了GFS的架构、MapReduce的计算过程以及BigTable的思想和HBase的实现。
|
11天前
|
SQL 存储 算法
比 SQL 快出数量级的大数据计算技术
SQL 是大数据计算中最常用的工具,但在实际应用中,SQL 经常跑得很慢,浪费大量硬件资源。例如,某银行的反洗钱计算在 11 节点的 Vertica 集群上跑了 1.5 小时,而用 SPL 重写后,单机只需 26 秒。类似地,电商漏斗运算和时空碰撞任务在使用 SPL 后,性能也大幅提升。这是因为 SQL 无法写出低复杂度的算法,而 SPL 提供了更强大的数据类型和基础运算,能够实现高效计算。
|
14天前
|
存储 大数据 定位技术
大数据 数据索引技术
【10月更文挑战第26天】
37 3
|
14天前
|
存储 大数据 OLAP
大数据数据分区技术
【10月更文挑战第26天】
49 2
|
17天前
|
消息中间件 分布式计算 大数据
数据为王:大数据处理与分析技术在企业决策中的力量
【10月更文挑战第29天】在信息爆炸的时代,大数据处理与分析技术为企业提供了前所未有的洞察力和决策支持。本文探讨了大数据技术在企业决策中的重要性和实际应用,包括数据的力量、实时分析、数据驱动的决策以及数据安全与隐私保护。通过这些技术,企业能够从海量数据中提取有价值的信息,预测市场趋势,优化业务流程,从而在竞争中占据优势。
57 2
|
19天前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
69 2
|
20天前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
59 1
|
1月前
|
存储 数据采集 分布式计算
大数据技术:开启智能时代的新引擎
【10月更文挑战第5天】大数据技术:开启智能时代的新引擎
下一篇
无影云桌面