hive sql 优化

简介:

Hive是将符合SQL语法的字符串解析生成可以在Hadoop上执行的MapReduce的工具。

使用Hive尽量按照分布式计算的一些特点来设计sql,和传统关系型数据库有区别,

所以需要去掉原有关系型数据库下开发的一些固有思维。

基本原则:

1:尽量尽早地过滤数据,减少每个阶段的数据量,对于分区表要加分区,同时只选择需要使用到的字段

select … from A

join B

on A.key = B.key

where A.userid>10

and B.userid<10

and A.dt=’20120417′

and B.dt=’20120417′;

应该改写为:

select …. from (select …. from A

where dt=’201200417′

and userid>10

) a

join ( select …. from B

where dt=’201200417′

and userid < 10   

) b

on a.key = b.key;

2:尽量原子化操作,尽量避免一个SQL包含复杂逻辑

可以使用中间表来完成复杂的逻辑

drop table if exists tmp_table_1;

create table if not exists tmp_table_1 as

select ……;

drop table if exists tmp_table_2;

create table if not exists tmp_table_2 as

select ……;

drop table if exists result_table;

create table if not exists result_table as

select ……;

drop table if exists tmp_table_1;

drop table if exists tmp_table_2;

3:单个SQL所起的JOB个数尽量控制在5个以下

4:慎重使用mapjoin,一般行数小于2000行,大小小于1M(扩容后可以适当放大)的表才能使用,小表要注意放在join的左边(目前TCL里面很多都小表放在join的右边)。

否则会引起磁盘和内存的大量消耗

5:写SQL要先了解数据本身的特点,如果有join ,group操作的话,要注意是否会有数据倾斜

如果出现数据倾斜,应当做如下处理:

set hive.exec.reducers.max=200;

set mapred.reduce.tasks= 200;—增大Reduce个数

set hive.groupby.mapaggr.checkinterval=100000 ;–这个是group的键对应的记录条数超过这个值则会进行分拆,值根据具体数据量设置

set hive.groupby.skewindata=true; –如果是group by过程出现倾斜 应该设置为true

set hive.skewjoin.key=100000; –这个是join的键对应的记录条数超过这个值则会进行分拆,值根据具体数据量设置

set hive.optimize.skewjoin=true;–如果是join 过程出现倾斜 应该设置为true

6:如果union all的部分个数大于2,或者每个union部分数据量大,应该拆成多个insert into 语句,实际测试过程中,执行时间能提升50%

insert overwite table tablename partition (dt= ….)

select ….. from (

select … from A

union all

select … from B

union all

select … from C

) R

where …;

可以改写为:

insert into table tablename partition (dt= ….)

select …. from A

WHERE …;

insert into table tablename partition (dt= ….)

select …. from B

WHERE …;

insert into table tablename partition (dt= ….)

select …. from C

WHERE …; 

目录
相关文章
|
1月前
|
SQL Oracle 数据库
使用访问指导(SQL Access Advisor)优化数据库业务负载
本文介绍了Oracle的SQL访问指导(SQL Access Advisor)的应用场景及其使用方法。访问指导通过分析给定的工作负载,提供索引、物化视图和分区等方面的优化建议,帮助DBA提升数据库性能。具体步骤包括创建访问指导任务、创建工作负载、连接工作负载至访问指导、设置任务参数、运行访问指导、查看和应用优化建议。访问指导不仅针对单条SQL语句,还能综合考虑多条SQL语句的优化效果,为DBA提供全面的决策支持。
68 11
|
2天前
|
SQL 分布式计算 Java
Spark SQL向量化执行引擎框架Gluten-Velox在AArch64使能和优化
本文摘自 Arm China的工程师顾煜祺关于“在 Arm 平台上使用 Native 算子库加速 Spark”的分享,主要内容包括以下四个部分: 1.技术背景 2.算子库构成 3.算子操作优化 4.未来工作
|
2月前
|
SQL 缓存 监控
大厂面试高频:4 大性能优化策略(数据库、SQL、JVM等)
本文详细解析了数据库、缓存、异步处理和Web性能优化四大策略,系统性能优化必知必备,大厂面试高频。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:4 大性能优化策略(数据库、SQL、JVM等)
|
2月前
|
SQL 缓存 数据库
SQL慢查询优化策略
在数据库管理和应用开发中,SQL查询的性能优化至关重要。慢查询优化不仅可以提高应用的响应速度,还能降低服务器负载,提升用户体验。本文将详细介绍针对SQL慢查询的优化策略。
|
2月前
|
SQL 存储 BI
gbase 8a 数据库 SQL合并类优化——不同数据统计周期合并为一条SQL语句
gbase 8a 数据库 SQL合并类优化——不同数据统计周期合并为一条SQL语句
|
2月前
|
SQL 数据库
gbase 8a 数据库 SQL优化案例-关联顺序优化
gbase 8a 数据库 SQL优化案例-关联顺序优化
|
2月前
|
SQL 数据库 UED
SQL性能提升秘籍:5步优化法与10个实战案例
在数据库管理和应用开发中,SQL查询的性能优化至关重要。高效的SQL查询不仅可以提高应用的响应速度,还能降低服务器负载,提升用户体验。本文将分享SQL优化的五大步骤和十个实战案例,帮助构建高效、稳定的数据库应用。
128 3
|
2月前
|
SQL 存储 缓存
如何优化SQL查询性能?
【10月更文挑战第28天】如何优化SQL查询性能?
206 10
|
2月前
|
SQL 存储 缓存
SQL Server 数据太多如何优化
11种优化方案供你参考,优化 SQL Server 数据库性能得从多个方面着手,包括硬件配置、数据库结构、查询优化、索引管理、分区分表、并行处理等。通过合理的索引、查询优化、数据分区等技术,可以在数据量增大时保持较好的性能。同时,定期进行数据库维护和清理,保证数据库高效运行。
|
3月前
|
SQL 资源调度 分布式计算
如何让SQL跑快一点?(优化指南)
这篇文章主要探讨了如何在阿里云MaxCompute(原ODPS)平台上对SQL任务进行优化,特别是针对大数据处理和分析场景下的性能优化。