LintCode: Edit Distance

简介:

dp注意问题

  递推式

  初值

  空间优化

1. bfs

题目里有“最小”字样,符合bfs关键词:上界len(S)+len(T)

实际上不可行;

2. dp

删除字符很麻烦

换个角度,变为字符串“对齐问题”:

S = ABCF

T = DBFG

S:A B C F -

T:D B - F G

对应位置相同则不扣分,不同则扣一分(需要修改一次)

两个特殊字符“-”不会对应

S位置“-”代表增字符

T位置“-”代表删字符

使扣分最少

dp[i][j]表示S的前i个位置和T的前j个位置对齐的最少得分

dp[i][j] = min(dp[i-1][j-1]+same(i,j), dp[i-1][j]+1, dp[i][j-1]+1)

  dp[i-1][j-1]+same(i,j)对应S第i个字符和T的第j个字符对齐

  dp[i-1][j]+1对应S第i个字符和“-”对齐,即删掉S中第i个字符

  dp[i][j-1]+1对应T第j个字符和“-”对齐,即在S中加入该字符

初值

  dp[0][j] = j, j>=0

  dp[i][0] = i, i>=0

时间复杂度:O(len(S)*len(T))

空间优化:省掉一维

  对每个i,正向循环j 

    注意保存dp[i-1][j-1],因为j-1已经是新值

复制代码
 1 class Solution {
 2 public:    
 3     /**
 4      * @param word1 & word2: Two string.
 5      * @return: The minimum number of steps.
 6      */
 7     int minDistance(string word1, string word2) {
 8         // write your code here
 9         int m = word1.length(), n = word2.length();
10         vector<vector<int> > dp(m + 1, vector<int>(n + 1));
11         for (int i = 0; i <= m; ++i) {
12             for (int j = 0; j <= n; ++j) {
13                 if ( i== 0 ) {
14                     dp[i][j] = j;
15                 } else if (j == 0) {
16                     dp[i][j] = i;
17                 } else {
18                     dp[i][j] = min(dp[i - 1][j - 1] + ((word1[i - 1] == word2[j - 1])?0:1),
19                                    min(dp[i][j - 1] + 1, dp[i - 1][j] + 1)
20                                 );
21                 }
22             }
23         }
24         return dp[m][n];
25     }
26 };
复制代码

空间优化

复制代码
 1 class Solution {
 2 public:    
 3     /**
 4      * @param word1 & word2: Two string.
 5      * @return: The minimum number of steps.
 6      */
 7     int minDistance(string word1, string word2) {
 8         // write your code here
 9         int m = word1.length(), n = word2.length();
10         // vector<vector<int> > dp(m + 1, vector<int>(n + 1));
11         vector<int> dp(n + 1);
12         for (int i = 0; i <= m; ++i) {
13             int last;
14             for (int j = 0; j <= n; ++j) {
15                 if ( i== 0 ) {
16                     dp[j] = j;
17                 } else if (j == 0) {
18                     last = dp[j];
19                     dp[j] = i;
20                 } else {
21                     int tmp = dp[j];
22                     dp[j] = min(last + ((word1[i - 1] == word2[j - 1])?0:1),
23                                    min(dp[j - 1] + 1, dp[j] + 1)
24                                 );
25                     last = tmp;
26                 }
27             }
28         }
29         return dp[n];
30     }
31 };
复制代码

 

本文转自ZH奶酪博客园博客,原文链接:http://www.cnblogs.com/CheeseZH/p/5006590.html,如需转载请自行联系原作者

相关文章
|
6月前
|
机器学习/深度学习 Java
hdu-2680-Choose the best route(dijkstra)
hdu-2680-Choose the best route(dijkstra)
29 0
|
数据库 C语言
LeetCode 72. Edit Distance
给定两个单词word1和word2,找到将word1转换为word2所需的最小操作数。 您对单词允许以下3个操作: 插入一个字符 删除一个字符 替换一个字符
67 0
LeetCode 72. Edit Distance
Leetcode-Easy 72. Edit Distance
Leetcode-Easy 72. Edit Distance
86 0
Leetcode-Easy 72. Edit Distance
|
机器学习/深度学习
HDU-2680,Choose the best route(Dijkstra)
HDU-2680,Choose the best route(Dijkstra)
|
人工智能 Java