hdu Count the Trees

简介:

Count the Trees

Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 135 Accepted Submission(s): 102
Problem Description
Another common social inability is known as ACM (Abnormally Compulsive Meditation). This psychological disorder is somewhat common among programmers. It can be described as the temporary (although frequent) loss of the faculty of speech when the whole power of the brain is applied to something extremely interesting or challenging. 
Juan is a very gifted programmer, and has a severe case of ACM (he even participated in an ACM world championship a few months ago). Lately, his loved ones are worried about him, because he has found a new exciting problem to exercise his intellectual powers, and he has been speechless for several weeks now. The problem is the determination of the number of different labeled binary trees that can be built using exactly n different elements. 

For example, given one element A, just one binary tree can be formed (using A as the root of the tree). With two elements, A and B, four different binary trees can be created, as shown in the figure. 

If you are able to provide a solution for this problem, Juan will be able to talk again, and his friends and family will be forever grateful. 

 
Input
The input will consist of several input cases, one per line. Each input case will be specified by the number n ( 1 ≤ n ≤ 100 ) of different elements that must be used to form the trees. A number 0 will mark the end of input and is not to be processed.
 
Output
For each input case print the number of binary trees that can be built using the n elements, followed by a newline character.
 
Sample Input
1
2
10
25
0
 
Sample Output
1
4
60949324800
75414671852339208296275849248768000000
 
 
给定n个元素,求组成的树的不同的结构的个数。
      分析:元素的排列方式为n!种,树的结构不同形式为卡特兰数C(n),
      所以:总共的数的不同结构为n!*C(n);

import java.util.*;

import java.math.*;
public class
 Main {

    public static
 void main(String[] args){
    Scanner
 cin = new Scanner(System.in);
    BigDecimal
 []a = new BigDecimal[101];
    BigDecimal
 []kt = new BigDecimal[101];
    BigDecimal
 b,n;
    int
 k;

    a[0] = BigDecimal.valueOf(1);
    for
(int i = 1 ; i < 101;i++){

       b = a[i-1].multiply(BigDecimal.valueOf(i));
       a[i] = b;
    }

    kt[1] = BigDecimal.valueOf(1);
    for
(int i = 2;i< 101;i++){

    n = BigDecimal.valueOf(i);
    b = BigDecimal.valueOf(4).multiply(n);
    b = b.subtract(BigDecimal.valueOf(2));
    n = n.add(BigDecimal.valueOf(1));
    b = b.multiply(kt[i-1]);
    kt[i] = b.divide(n);
    }

      while
(cin.hasNext()){

      k = cin.nextInt();
      if
(k==0)break;

      b = a[k].multiply(kt[k]);
      System
.out.println(b);
      }
    }
}









本文转自NewPanderKing51CTO博客,原文链接:http://www.cnblogs.com/newpanderking/archive/2011/07/31/2122522.html ,如需转载请自行联系原作者


相关文章
LeetCode 216. Combination Sum III
找出所有相加之和为 n 的 k 个数的组合。组合中只允许含有 1 - 9 的正整数,并且每种组合中不存在重复的数字。
105 0
LeetCode 216. Combination Sum III
LeetCode 39. Combination Sum
给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。 candidates 中的数字可以无限制重复被选取。
72 0
LeetCode 39. Combination Sum
|
存储 Python
LeetCode 315. Count of Smaller Numbers After Self
给定一个整数数组 nums,按要求返回一个新数组 counts。数组 counts 有该性质: counts[i] 的值是 nums[i] 右侧小于 nums[i] 的元素的数量。
94 0
LeetCode 315. Count of Smaller Numbers After Self
|
Go
HDOJ(HDU) 1977 Consecutive sum II(推导、、)
HDOJ(HDU) 1977 Consecutive sum II(推导、、)
108 0
[LeetCode]--40. Combination Sum II
Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T. Each number in C may only be used once in the
1287 0