Flume NG基本架构与Flume NG核心概念

简介:

导读

  Flume NG是一个分布式、可靠、可用的系统,它能够将不同数据源的海量日志数据进行高效收集、聚合、移动,最后存储到一个中心化数据存储系统中。
由原来的Flume OG到现在的Flume NG,进行了架构重构,并且现在NG版本完全不兼容原来的OG版本!!!
经过架构重构后,Flume NG更像是一个轻量的小工具,非常简单,容易适应各种方式日志收集,并支持failover和负载均衡。

 

 

 

 

 

Flume NG 的架构

  Flume NG 的架构图如下所示。

 

 

 

 

Flume NG核心概念

  Flume的架构主要有以下几个核心概念:
1、Event:一个数据单元,带有一个可选的消息头。
2、Flow:Event从源点到达目的点的迁移的抽象。
3、Client:操作位于源点处的Event,将其发送到Flume Agent。
4、Agent:一个独立的Flume进程,包含组件Source、Channel、Sink。
5、Source:用来消费传递到该组件的Event。
6、Channel:中转Event的一个临时存储,保存有Source组件传递过来的Event。
7、Sink:从Channel中读取并移除Event,将Event传递到Flow Pipeline中的下一个Agent(如果有的话)

 

 

 

 

 


下面我分别介绍以上几个核心的概念

  1、Event
1、Event 是Flume数据传输的基本单元。
2、Flume 以事件的形式将数据从源头传输到最终的目的。
3、Event 由可选的header和载有数据的一个byte array构成。
1)载有的数据对Flume是不透明的。
2)Header 是容纳了key-value字符串对的无序集合,key在集合内是唯一的。
3)Header 可以在上下文路由中使用扩展。

 

  2、Client
1、Client 是一个将原始log包装成events并且发送它们到一个或者多个agent的实体。
2、Client 在Flume的拓扑结构中不是必须的,它的目的是从数据源系统中解耦Flume

 

  3、Agent
1、一个Agent包含Source、Channel、Sink和其他组件。
2、它利用这些组件将events从一个节点传输到另一个节点或最终目的地。
3、agent是Flume流的基础部分。
4、Flume 为这些组件提供了配置、生命周期管理、监控支持。

 

  4、Agent之Source

      1、Source负责接收event或通过特殊机制产生event,并将events批量的放到一个或多个Channel。
2、Source包含event驱动和轮询两种类型。
3、Source 有不同的类型。
1)与系统集成的Source:Syslog,NetCat。
2)自动生成事件的Source:Exec
3)用于Agent和Agent之间的通信的IPC Source:Avro、Thrift。
4、Source必须至少和一个Channel关联。

 

 

 

 

    5、Agent之Channel与Sink

        

 

    6、Agent之Channel
1、Channel位于Source和Sink之间,用于缓存进来的event。
2、当Sink成功的将event发送到下一跳的Channel或最终目的地,event才Channel中移除。
3、不同的Channel提供的持久化水平也是不一样的:
1)Memory Channel:volatile。
2)File Channel:基于WAL实现。
3)JDBC Channel:基于嵌入Database实现。
4、Channel支持事物,提供较弱的顺序保证。
5、Channel可以和任何数量的Source和Sink工作。

 

 

 

     7、Agent之Sink
1、Sink负责将event传输到下一跳或最终目的,成功完成后将event从Channel移除。
2、有不同类型的Sink:
1)存储event到最终目的的终端Sink。比如HDFS,HBase。
2)自动消耗的Sink。比如:Null Sink。
3)用于Agent间通信的IPC sink:Avro。
3、Sink必须作用于一个确切的Channel。

 

本文转自大数据躺过的坑博客园博客,原文链接:http://www.cnblogs.com/zlslch/p/6116554.html,如需转载请自行联系原作者

相关文章
|
2月前
|
存储 分布式计算 大数据
大数据-169 Elasticsearch 索引使用 与 架构概念 增删改查
大数据-169 Elasticsearch 索引使用 与 架构概念 增删改查
59 3
|
2月前
|
消息中间件 NoSQL Kafka
大数据-52 Kafka 基础概念和基本架构 核心API介绍 应用场景等
大数据-52 Kafka 基础概念和基本架构 核心API介绍 应用场景等
64 5
|
2月前
|
消息中间件 存储 分布式计算
大数据-53 Kafka 基本架构核心概念 Producer Consumer Broker Topic Partition Offset 基础概念了解
大数据-53 Kafka 基本架构核心概念 Producer Consumer Broker Topic Partition Offset 基础概念了解
67 4
|
2月前
|
存储 分布式计算 算法
大数据-105 Spark GraphX 基本概述 与 架构基础 概念详解 核心数据结构
大数据-105 Spark GraphX 基本概述 与 架构基础 概念详解 核心数据结构
50 0
|
2月前
|
消息中间件 分布式计算 Kafka
大数据-98 Spark 集群 Spark Streaming 基础概述 架构概念 执行流程 优缺点
大数据-98 Spark 集群 Spark Streaming 基础概述 架构概念 执行流程 优缺点
40 0
|
2月前
|
存储 SQL 消息中间件
Hadoop-26 ZooKeeper集群 3台云服务器 基础概念简介与环境的配置使用 架构组成 分布式协调框架 Leader Follower Observer
Hadoop-26 ZooKeeper集群 3台云服务器 基础概念简介与环境的配置使用 架构组成 分布式协调框架 Leader Follower Observer
49 0
|
2月前
|
设计模式 消息中间件 监控
后端开发中的微服务架构:从概念到实践
后端开发中的微服务架构:从概念到实践
|
3月前
|
运维 Cloud Native Devops
云原生架构的崛起与实践云原生架构是一种通过容器化、微服务和DevOps等技术手段,帮助应用系统实现敏捷部署、弹性扩展和高效运维的技术理念。本文将探讨云原生的概念、核心技术以及其在企业中的应用实践,揭示云原生如何成为现代软件开发和运营的主流方式。##
云原生架构是现代IT领域的一场革命,它依托于容器化、微服务和DevOps等核心技术,旨在解决传统架构在应对复杂业务需求时的不足。通过采用云原生方法,企业可以实现敏捷部署、弹性扩展和高效运维,从而大幅提升开发效率和系统可靠性。本文详细阐述了云原生的核心概念、主要技术和实际应用案例,并探讨了企业在实施云原生过程中的挑战与解决方案。无论是正在转型的传统企业,还是寻求创新的互联网企业,云原生都提供了一条实现高效能、高灵活性和高可靠性的技术路径。 ##
211 3
|
4月前
|
数据采集 存储 Java
Flume Agent 的内部原理分析:深入探讨 Flume 的架构与实现机制
【8月更文挑战第24天】Apache Flume是一款专为大规模日志数据的收集、聚合及传输而设计的分布式、可靠且高可用系统。本文深入解析Flume Agent的核心机制并提供实际配置与使用示例。Flume Agent由三大组件构成:Source(数据源)、Channel(数据缓存)与Sink(数据目的地)。工作流程包括数据采集、暂存及传输。通过示例配置文件和Java代码片段展示了如何设置这些组件以实现日志数据的有效管理。Flume的强大功能与灵活性使其成为大数据处理及实时数据分析领域的优选工具。
121 1
|
4月前
|
Java Docker 微服务
微服务架构的概念、特点以及如何在Java Web开发中实现微服务。
微服务架构的概念、特点以及如何在Java Web开发中实现微服务。
97 1
下一篇
无影云桌面