Task Schedule
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 3412 Accepted Submission(s): 1197
Problem Description
Our geometry princess XMM has stoped her study in computational geometry to concentrate on her newly opened factory. Her factory has introduced M new machines in order to process the coming N tasks. For the i-th task, the factory has to start processing it at or after day Si, process it for Pi days, and finish the task before or at day Ei. A machine can only work on one task at a time, and each task can be processed by at most one machine at a time. However, a task can be interrupted and processed on different machines on different days.
Now she wonders whether he has a feasible schedule to finish all the tasks in time. She turns to you for help.
Now she wonders whether he has a feasible schedule to finish all the tasks in time. She turns to you for help.
Input
On the first line comes an integer T(T<=20), indicating the number of test cases.
You are given two integer N(N<=500) and M(M<=200) on the first line of each test case. Then on each of next N lines are three integers Pi, Si and Ei (1<=Pi, Si, Ei<=500), which have the meaning described in the description. It is guaranteed that in a feasible schedule every task that can be finished will be done before or at its end day.
You are given two integer N(N<=500) and M(M<=200) on the first line of each test case. Then on each of next N lines are three integers Pi, Si and Ei (1<=Pi, Si, Ei<=500), which have the meaning described in the description. It is guaranteed that in a feasible schedule every task that can be finished will be done before or at its end day.
Output
For each test case, print “Case x: ” first, where x is the case number. If there exists a feasible schedule to finish all the tasks, print “Yes”, otherwise print “No”.
Print a blank line after each test case.
Print a blank line after each test case.
Sample Input
2 4 3 1 3 5 1 1 4 2 3 7 3 5 9 2 2 2 1 3 1 2 2
Sample Output
Case 1: Yes Case 2: Yes
Author
allenlowesy
最后求最大流是否大于等于总总工作量就是了。
#include"stdio.h" #include"string.h" #include"queue" using namespace std; #define N 1005 #define max(a,b) (a>b?a:b) #define min(a,b) (a<b?a:b) const int inf=0x7ffffff; int cnt,n,m,t; int head[N],q[N],dis[N]; struct node { int u,v,w,next; }map[N*N]; void add(int u,int v,int w) { map[cnt].u=u; map[cnt].v=v; map[cnt].w=w; map[cnt].next=head[u]; head[u]=cnt++; map[cnt].u=v; map[cnt].v=u; map[cnt].w=0; map[cnt].next=head[v]; head[v]=cnt++; } int bfs() { int i,u,v,t1,t2; memset(dis,0,sizeof(dis)); u=t1=t2=0; dis[u]=1; q[t1++]=u; while(t2<t1) { u=q[t2++]; for(i=head[u];i!=-1;i=map[i].next) { v=map[i].v; if(map[i].w&&!dis[v]) { dis[v]=dis[u]+1; if(v==t) return 1; q[t1++]=v; } } } return 0; } int dfs(int s,int lim) { int i,tmp,v,cost=0; if(s==t) return lim; for(i=head[s];i!=-1;i=map[i].next) { v=map[i].v; if(map[i].w&&dis[s]==dis[v]-1) { tmp=dfs(v,min(lim-cost,map[i].w)); if(tmp>0) { map[i].w-=tmp; map[i^1].w+=tmp; cost+=tmp; if(cost==lim) break; } else dis[v]=-1; } } return cost; } int dinic() { int ans=0,s=0; while(bfs()) ans+=dfs(s,inf); //printf("%d\n",ans); return ans; } int main() { int i,j,T,sum,t1,t2,cas=1; int s[505],e[505],p[505]; scanf("%d",&T); while(T--) { scanf("%d%d",&n,&m); t1=N;t2=0; sum=0; for(i=1;i<=n;i++) { scanf("%d%d%d",&p[i],&s[i],&e[i]); t1=min(t1,s[i]); t2=max(t2,e[i]); sum+=p[i]; } cnt=0; memset(head,-1,sizeof(head)); for(i=t1;i<=t2;i++) //超级源点到一般源点的流量 { add(0,i,m); } for(i=1;i<=n;i++) { for(j=s[i];j<=e[i];j++) { add(j,j+t2,1); add(j+t2,2*t2,1); } } t=t2*2; if(sum<=dinic()) printf("Case %d: Yes\n\n",cas++); else printf("Case %d: No\n\n",cas++); } return 0; }
版权声明:本文博客原创文章,博客,未经同意,不得转载。
本文转自mfrbuaa博客园博客,原文链接:http://www.cnblogs.com/mfrbuaa/p/4720126.html,如需转载请自行联系原作者