spark-2.2.0-bin-hadoop2.6和spark-1.6.1-bin-hadoop2.6发行包自带案例全面详解(java、python、r和scala)之Basic包下的JavaPageRank.java(图文详解)

简介:

spark-1.6.1-bin-hadoop2.6里Basic包下的JavaPageRank.java

复制代码
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

//package org.apache.spark.examples;
package zhouls.bigdata.Basic;



import scala.Tuple2;//scala里的元组
import com.google.common.collect.Iterables;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFlatMapFunction;
import org.apache.spark.api.java.function.PairFunction;
import java.util.ArrayList;
import java.util.List;
import java.util.Iterator;
import java.util.regex.Pattern;

/**
 * Computes the PageRank of URLs from an input file. Input file should
 * be in format of:
 * URL         neighbor URL
 * URL         neighbor URL
 * URL         neighbor URL
 * ...
 * where URL and their neighbors are separated by space(s).
 *
 * This is an example implementation for learning how to use Spark. For more conventional use,
 * please refer to org.apache.spark.graphx.lib.PageRank
 */
public final class JavaPageRank {
  private static final Pattern SPACES = Pattern.compile("\\s+");

  /*
   * 显示警告函数
   */
  static void showWarning() {
    String warning = "WARN: This is a naive implementation of PageRank " +
            "and is given as an example! \n" +
            "Please use the PageRank implementation found in " +
            "org.apache.spark.graphx.lib.PageRank for more conventional use.";
    System.err.println(warning);
  }

  private static class Sum implements Function2<Double, Double, Double> {
    @Override
    public Double call(Double a, Double b) {
      return a + b;
    }
  }

  
  /*
   * 主函数
   */
  public static void main(String[] args) throws Exception {
    if (args.length < 2) {
      System.err.println("Usage: JavaPageRank <file> <number_of_iterations>");
      System.exit(1);
    }

    showWarning();

    SparkConf sparkConf = new SparkConf().setAppName("JavaPageRank").setMaster("local");
    JavaSparkContext ctx = new JavaSparkContext(sparkConf);

    // Loads in input file. It should be in format of:
    //     URL         neighbor URL
    //     URL         neighbor URL
    //     URL         neighbor URL
    //     ...
//  JavaRDD<String> lines = ctx.textFile(args[0], 1);//这是官网发行包里写的
    JavaRDD<String> lines = ctx.textFile("data/input/mllib/pagerank_data.txt", 1);
    
    
    // Loads all URLs from input file and initialize their neighbors.
    //根据边关系数据生成 邻接表 如:(1,(2,3,4,5)) (2,(1,5))...  
    JavaPairRDD<String, Iterable<String>> links = lines.mapToPair(new PairFunction<String, String, String>() {
      @Override
      public Tuple2<String, String> call(String s) {
        String[] parts = SPACES.split(s);
        return new Tuple2<String, String>(parts[0], parts[1]);
      }
    }).distinct().groupByKey().cache();

    //初始化 ranks, 每一个url初始分值为1
    // Loads all URLs with other URL(s) link to from input file and initialize ranks of them to one.
    JavaPairRDD<String, Double> ranks = links.mapValues(new Function<Iterable<String>, Double>() {
      @Override
      public Double call(Iterable<String> rs) {
        return 1.0;
      }
    });

    
    /* 
     * 迭代iters次; 每次迭代中做如下处理, links(urlKey, neighborUrls) join (urlKey, rank(分值));
     * 对neighborUrls以及初始 rank,每一个neighborUrl  , neighborUrlKey, 初始rank/size(新的rank贡献值);
     * 然后再进行reduceByKey相加 并对分值 做调整 0.15 + 0.85 * _ 
     */
    // Calculates and updates URL ranks continuously using PageRank algorithm.
    for (int current = 0; current < Integer.parseInt(args[1]); current++) {
      // Calculates URL contributions to the rank of other URLs.
      JavaPairRDD<String, Double> contribs = links.join(ranks).values()
        .flatMapToPair(new PairFlatMapFunction<Tuple2<Iterable<String>, Double>, String, Double>() {
          @Override
          public Iterable<Tuple2<String, Double>> call(Tuple2<Iterable<String>, Double> s) {
            int urlCount = Iterables.size(s._1);
            List<Tuple2<String, Double>> results = new ArrayList<Tuple2<String, Double>>();
            for (String n : s._1) {
              results.add(new Tuple2<String, Double>(n, s._2() / urlCount));
            }
            return results;
          }
      });

      
      
      // Re-calculates URL ranks based on neighbor contributions.
      ranks = contribs.reduceByKey(new Sum()).mapValues(new Function<Double, Double>() {
        @Override
        public Double call(Double sum) {
          return 0.15 + sum * 0.85;
        }
      });
    }

    
    //输出排名
    // Collects all URL ranks and dump them to console.
    List<Tuple2<String, Double>> output = ranks.collect();
    for (Tuple2<?,?> tuple : output) {
        System.out.println(tuple._1() + " has rank: " + tuple._2() + ".");
    }

    ctx.stop();
  }
}
复制代码

 

 

 

  没结果,暂时

 

 

 

 

 

 

 

spark-2.2.0-bin-hadoop2.6里Basic包下的JavaPageRank.java

复制代码
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

//package org.apache.spark.examples;
package zhouls.bigdata.Basic;

import java.util.ArrayList;
import java.util.List;
import java.util.regex.Pattern;
import scala.Tuple2;
import com.google.common.collect.Iterables;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.sql.SparkSession;    
  
/**
 * Computes the PageRank of URLs from an input file. Input file should
 * be in format of:
 * URL         neighbor URL     
 * URL         neighbor URL
 * URL         neighbor URL
 * ...
 * where URL and their neighbors are separated by space(s).
 *
 * This is an example implementation for learning how to use Spark. For more conventional use,
 * please refer to org.apache.spark.graphx.lib.PageRank
 *
 * Example Usage:
 * <pre>
 * bin/run-example JavaPageRank data/mllib/pagerank_data.txt 10
 * </pre>
 */
public final class JavaPageRank {
  private static final Pattern SPACES = Pattern.compile("\\s+");

  /*
   * 显示警告函数
   */
  static void showWarning() {
    String warning = "WARN: This is a naive implementation of PageRank " +
            "and is given as an example! \n" +
            "Please use the PageRank implementation found in " +
            "org.apache.spark.graphx.lib.PageRank for more conventional use.";
    System.err.println(warning);
  }

  private static class Sum implements Function2<Double, Double, Double> {
    @Override
    public Double call(Double a, Double b) {
      return a + b;
    }
  }

  /*
   * 主函数
   */
  public static void main(String[] args) throws Exception {
    if (args.length < 2) {
      System.err.println("Usage: JavaPageRank <file> <number_of_iterations>");
      System.exit(1);
    }

    showWarning();

    SparkSession spark = SparkSession
      .builder()
      .master("local")
      .appName("JavaPageRank")
      .getOrCreate();

    // Loads in input file. It should be in format of:
    //     URL         neighbor URL
    //     URL         neighbor URL
    //     URL         neighbor URL
    //     ...  
//  JavaRDD<String> lines = spark.read().textFile(args[0]).javaRDD();
    JavaRDD<String> lines = spark.read().textFile("data/input/mllib/pagerank_data.txt").javaRDD();
    
    
    
    
    
    // Loads all URLs from input file and initialize their neighbors.
    //根据边关系数据生成 邻接表 如:(1,(2,3,4,5)) (2,(1,5))...  
    JavaPairRDD<String, Iterable<String>> links = lines.mapToPair(s -> {
      String[] parts = SPACES.split(s);
      return new Tuple2<>(parts[0], parts[1]);
    }).distinct().groupByKey().cache();

    
    
    
    // Loads all URLs with other URL(s) link to from input file and initialize ranks of them to one.
    //初始化 ranks, 每一个url初始分值为1
    JavaPairRDD<String, Double> ranks = links.mapValues(rs -> 1.0);

    
    /* 
     * 迭代iters次; 每次迭代中做如下处理, links(urlKey, neighborUrls) join (urlKey, rank(分值));
     * 对neighborUrls以及初始 rank,每一个neighborUrl  , neighborUrlKey, 初始rank/size(新的rank贡献值);
     * 然后再进行reduceByKey相加 并对分值 做调整 0.15 + 0.85 * _ 
     */
    // Calculates and updates URL ranks continuously using PageRank algorithm.
    for (int current = 0; current < Integer.parseInt(args[1]); current++) {
      // Calculates URL contributions to the rank of other URLs.
      JavaPairRDD<String, Double> contribs = links.join(ranks).values()
        .flatMapToPair(s -> {
          int urlCount = Iterables.size(s._1());
          List<Tuple2<String, Double>> results = new ArrayList<>();
          for (String n : s._1) {
            results.add(new Tuple2<>(n, s._2() / urlCount));
          }
          return results.iterator();
        });

      // Re-calculates URL ranks based on neighbor contributions.
      ranks = contribs.reduceByKey(new Sum()).mapValues(sum -> 0.15 + sum * 0.85);
    }

    
    //输出排名
    // Collects all URL ranks and dump them to console.
    List<Tuple2<String, Double>> output = ranks.collect();
    for (Tuple2<?,?> tuple : output) {
      System.out.println(tuple._1() + " has rank: " + tuple._2() + ".");
    }

    spark.stop();
  }
}


本文转自大数据躺过的坑博客园博客,原文链接:http://www.cnblogs.com/zlslch/p/7458368.html,如需转载请自行联系原作者
相关文章
|
7月前
|
数据采集 自然语言处理 Java
Playwright 多语言一体化——Python/Java/.NET 全栈采集实战
本文以反面教材形式,剖析了在使用 Playwright 爬取懂车帝车友圈问答数据时常见的配置错误(如未设置代理、Cookie 和 User-Agent),并提供了 Python、Java 和 .NET 三种语言的修复代码示例。通过错误示例 → 问题剖析 → 修复过程 → 总结教训的完整流程,帮助读者掌握如何正确配置爬虫代理及其它必要参数,避免 IP 封禁和反爬检测,实现高效数据采集与分析。
424 3
Playwright 多语言一体化——Python/Java/.NET 全栈采集实战
|
5月前
|
JSON JavaScript 前端开发
Python+JAVA+PHP语言,苏宁商品详情API
调用苏宁商品详情API,可通过HTTP/HTTPS发送请求并解析响应数据,支持多种编程语言,如JavaScript、Java、PHP、C#、Ruby等。核心步骤包括构造请求URL、发送GET/POST请求及解析JSON/XML响应。不同语言示例展示了如何获取商品名称与价格等信息,实际使用时请参考苏宁开放平台最新文档以确保兼容性。
|
8月前
|
数据采集 自然语言处理 JavaScript
Playwright多语言生态:跨Python/Java/.NET的统一采集方案
随着数据采集需求的增加,传统爬虫工具如Selenium、Jsoup等因语言割裂、JS渲染困难及代理兼容性差等问题,难以满足现代网站抓取需求。微软推出的Playwright框架,凭借多语言支持(Python/Java/.NET/Node.js)、统一API接口和优异的JS兼容性,解决了跨语言协作、动态页面解析和身份伪装等痛点。其性能优于Selenium与Puppeteer,在学术数据库(如Scopus)抓取中表现出色。行业应用广泛,涵盖高校科研、大型数据公司及AI初创团队,助力构建高效稳定的爬虫系统。
439 2
Playwright多语言生态:跨Python/Java/.NET的统一采集方案
|
数据采集 缓存 Java
Python vs Java:爬虫任务中的效率比较
Python vs Java:爬虫任务中的效率比较
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
245 0
|
机器学习/深度学习 人工智能 自然语言处理
比较Python和Java哪个更好
比较Python和Java哪个更好
398 5
|
设计模式 数据采集 分布式计算
企业spark案例 —出租车轨迹分析
企业spark案例 —出租车轨迹分析
476 0
|
消息中间件 存储 druid
大数据-156 Apache Druid 案例实战 Scala Kafka 订单统计
大数据-156 Apache Druid 案例实战 Scala Kafka 订单统计
212 3
|
安全 Java Python
基于python-django的Java网站全站漏洞检测系统
基于python-django的Java网站全站漏洞检测系统
164 0

推荐镜像

更多