[算法系列之十三]Rabin-Karp字符串查找算法

简介:

简介

蛮力匹配法(brute force string matching)是字符串匹配算法中最基本的一种,也是最简单的一种。它确实有自己的优点,比如它并不需要对文本串(text)或模式串(pattern)进行预处理。然而它最大的问题就是运行速度太慢,所以在很多场合下蛮力字符串匹配算法并不是那么有用。我们需要一些更快的方法来完成字符串的匹配工作,然而在此之前,我们还是回过头来再看一遍蛮力匹配法,以便更好地理解其他子串匹配算法。

如下图所示,在蛮力字符串匹配里,我们将文本中的每一个字符和模式串的第一个字符进行比对。一旦我们找到了一个匹配,我们就将文本中下一个字符取出来和模式串的第二个字符进行比较。
这里写图片描述
蛮力字符串匹配之所以慢,是因为它需要比对文本和模式串的每个字符

该算法运行速度慢的主要原因有二:
一方面,我们需要对文本中的每个字符都进行比对;
另一方面,即使我们发现模式串首字符和文本中的某个字符相匹配,我们仍然需要对模式串中剩下的所有符号(字符)挨个进行比对,才知道它们是不是出现在接下来的文本中。那么,是否有别的方法可以用来判断文本是否包含模式串呢?

答案是肯定的,确实存在一种更快的方法。为了避免挨个字符对文本和模式串进行比较,我们可以尝试一次性判断两者是否相等。因此,我们需要一个好的哈希函数(hash function)。通过哈希函数,我们可以算出模式串的哈希值,然后将它和文本中的子串的哈希值进行比较。这里有一个问题,我们必须保证该哈希函数能够对一个较长的字符串返回较短的哈希值。然而,我们又不能指望较长的模式串能得到较短的哈希值。但除此之外,这个新方法在速度上应该能比暴力法有显著提升。

这种更快的方法就是Rabin-Karp算法。


概述

Michael O. Rabin和Richard M. Karp在1987年提出一个想法,即可以对模式串进行哈希运算并将其哈希值与文本中子串的哈希值进行比对。总的来说这一想法非常浅显,唯一的问题在于我们需要找到一个哈希函数 ,它需要能够对不同的字符串返回不同的哈希值。例如,该哈希函数可能会对每个字符的ASCII码进行算,但同时我们也需要仔细考虑对多语种文本的支持

这里写图片描述
Rabin-Karp算法对模式串和文本中的子串分别进行哈希运算,以便对它们进行快速比对

哈希算法可以有很多种不同的形式,它可能包含ASCII码字符以便对数字进行转化,但也可能是别的形式。我们唯一需要的就是将一个字符串(模式串)转化成为能够快速进行比较的哈希值。以”hello world”为例,假设它的哈希值hash(‘hello world’)=12345。那么如果hash(‘he’)=1,那么我们就可以说模式串”he”包含在文本”hello world”中。由此,我们可以每次从文本中取出长度为m(m为模式串的长度)的子串,然后将该子串进行哈希,并将其哈希值与模式串的哈希值进行比较。

*实现

我们已经看了一些关于Rabin-Karp算法的图解,现在让我们来关注一下它的实现。以下的PHP代码展示了通过一个简单的哈希表来将字符转化成整数的实例。它非常简单,仅仅只是为了用来阐明Rabin-Karp算法的基本原理。

function hash_string($str, $len)
{
    $hash = '';

    $hash_table = array(
        'h' => 1,
        'e' => 2,
        'l' => 3,
        'o' => 4,
        'w' => 5,
        'r' => 6,
        'd' => 7,
    );

    for ($i = 0; $i < $len; $i++) {
        $hash .= $hash_table[$str{$i}];
    }

    return (int)$hash;
}

function rabin_karp($text, $pattern)
{
    $n = strlen($text);
    $m = strlen($pattern);

    $text_hash = hash_string(substr($text, 0, $m), $m);
    $pattern_hash = hash_string($pattern, $m);

    for ($i = 0; $i < $n-$m+1; $i++) {
        if ($text_hash == $pattern_hash) {
            return $i;
        }

        $text_hash = hash_string(substr($text, $i, $m), $m);
    }

    return -1;
}

// 2
echo rabin_karp('hello world', 'ello');

多模式匹配

Rabin-Karp算法非常适用于多模式匹配(multiple pattern match)。事实上,它天生就是能够支持此类的操作,这也是它相对于其他字符串查找算法的优势。

算法复杂度

Rabin-Karp算法的复杂度是O(nm),其中n和m分别是文本和模式串的长度。那么它到底比暴力匹配好在哪儿呢?暴力匹配法的算法复杂度同样是O(nm),这样看起来Rabin-Karp算法在性能上并没有多大提升。然后在实际使用过程中,Rabin-Karp的复杂度通常被认为是O(n+m)。这就使得它比暴力匹配法要快一些,具体见下图。

这里写图片描述
Rabin-Karp的复杂度理论上是O(nm),但在实际使用中通常是O(n+m)

需要注意的是Rabin-Karp算法需要O(m)的预处理时间

译者注
事实上,由于哈希函数无法保证对不同的字符串产生不同的哈希值,有哈希冲突的现象存在,所以即使模式串的哈希值和文本子串的哈希值相等,也需要对这两个长度为m的字符串进行额外的比对(当然,如果不相等也就不用比对了,其实大部分的时间省在这上面),这时比对的开销是O(m)。最坏情况下,文本中所有长度为m的子串(一共n-m+1个)都和模式串匹配,所以算法复杂度为O((n-m+1)m)。然而实际情况下,需要进一步比对的子串个数总是有限的(假设为c个),那么算法的期望匹配时间就变成O((n-m+1)+cm)=O(n+m)。

应用

我们已经看到Rabin-Karp算法比暴力匹配法其实也快不了太多,那它的应用场景到底是哪里?
要回答这个问题,需要先了解Rabin-Karp算法被称道和诟病的原因。然后根据自己的具体应用需要来做判断。
Rabin-Karp算法被称道的三个原因:
(1)它可以用来检测抄袭,因为它能够处理多模式匹配;

这里写图片描述
Rabin-Karp算法能够有效地检测抄袭

(2)虽然在理论上并不比暴力匹配法更优,但在实际应用中它的复杂度仅为O(n+m);
(3)如果能够选择一个好的哈希函数,它的效率将会很高,而且也易于实现。

Rabin-Karp算法被诟病的两个原因:
(1)有许多字符串匹配算法的复杂度小于O(n+m);
(2)有时候它和暴力匹配法一样慢,并且它需要额外空间。

结语

Rabin-Karp算法之所以出众最大的原因就是它可以对多模式进行匹配。这一特性使得它在检测抄袭方面(尤其是大篇幅文字)非常好用。

目录
相关文章
|
3月前
|
算法
【算法】滑动窗口——找到字符串中所有字母异位词
【算法】滑动窗口——找到字符串中所有字母异位词
|
27天前
|
算法
两个字符串匹配出最长公共子序列算法
本文介绍了最长公共子序列(LCS)问题的算法实现,通过动态规划方法求解两个字符串的最长公共子序列,并提供了具体的编程实现细节和示例。
60 1
两个字符串匹配出最长公共子序列算法
|
3月前
|
算法 Java
掌握算法学习之字符串经典用法
文章总结了字符串在算法领域的经典用法,特别是通过双指针法来实现字符串的反转操作,并提供了LeetCode上相关题目的Java代码实现,强调了掌握这些技巧对于提升算法思维的重要性。
|
4月前
|
自然语言处理 算法 搜索推荐
字符串相似度算法完全指南:编辑、令牌与序列三类算法的全面解析与深入分析
在自然语言处理领域,人们经常需要比较字符串,这些字符串可能是单词、句子、段落甚至是整个文档。如何快速判断两个单词或句子是否相似,或者相似度是好还是差。这类似于我们使用手机打错一个词,但手机会建议正确的词来修正它,那么这种如何判断字符串相似度呢?本文将详细介绍这个问题。
264 1
|
4月前
|
数据采集 算法 JavaScript
揭开JavaScript字符串搜索的秘密:indexOf、includes与KMP算法
JavaScript字符串搜索涵盖`indexOf`、`includes`及KMP算法。`indexOf`返回子字符串位置,`includes`检查是否包含子字符串。KMP是高效的搜索算法,尤其适合长模式匹配。示例展示了如何在数据采集(如网页爬虫)中使用这些方法,结合代理IP进行安全搜索。代码示例中,搜索百度新闻结果并检测是否含有特定字符串。学习这些技术能提升编程效率和性能。
110 1
揭开JavaScript字符串搜索的秘密:indexOf、includes与KMP算法
|
3月前
|
算法 C++
惊爆!KPM算法背后的秘密武器:一行代码揭秘字符串最小周期的终极奥义,让你秒变编程界周期大师!
【8月更文挑战第4天】字符串最小周期问题旨在找出字符串中最短重复子串的长度。KPM(实为KMP,Knuth-Morris-Pratt)算法,虽主要用于字符串匹配,但其生成的前缀函数(next数组)也可用于求解最小周期。核心思想是构建LPS数组,记录模式串中每个位置的最长相等前后缀长度。对于长度为n的字符串S,其最小周期T可通过公式ans = n - LPS[n-1]求得。通过分析周期字符串的特性,可证明该方法的有效性。提供的C++示例代码展示了如何计算给定字符串的最小周期,体现了KPM算法在解决此类问题上的高效性。
74 0
|
5月前
|
存储 算法 Cloud Native
C++ bcrypt算法 字符串加密,亲测有效
C++ bcrypt算法 字符串加密,亲测有效
|
4月前
|
算法 Java
KMP算法详解及其在字符串匹配中的应用
KMP算法详解及其在字符串匹配中的应用
|
5月前
|
存储 算法
算法训练,牛客.判断是不是平衡二叉树 牛客.最大子矩阵两个数组的交集牛客.数组中两个字符串的最小距离
算法训练,牛客.判断是不是平衡二叉树 牛客.最大子矩阵两个数组的交集牛客.数组中两个字符串的最小距离
算法训练,牛客.判断是不是平衡二叉树 牛客.最大子矩阵两个数组的交集牛客.数组中两个字符串的最小距离
|
5月前
|
存储 算法 Java
Java数据结构与算法:用于高效地存储和检索字符串数据集
Java数据结构与算法:用于高效地存储和检索字符串数据集