Given two integers n and k, return all possible combinations of k numbers out of 1 ... n.
For example,
If n = 4 and k = 2, a solution is:
[ [2,4], [3,4], [2,3], [1,2], [1,3], [1,4], ]
这道题让求1到n共n个数字里k个数的组合数的所有情况,还是要用深度优先搜索DFS来解,根据以往的经验,像这种要求出所有结果的集合,一般都是用DFS调用递归来解。那么我们建立一个保存最终结果的大集合res,还要定义一个保存每一个组合的小集合out,每次放一个数到out里,如果out里数个数到了k个,则把out保存到最终结果中,否则在下一层中继续调用递归。网友u010500263的博客里有一张图很好的说明了递归调用的顺序,请点击这里。根据上面分析,可写出代码如下:
解法一:
class Solution { public: vector<vector<int>> combine(int n, int k) { vector<vector<int>> res; vector<int> out; helper(n, k, 1, out, res); return res; } void helper(int n, int k, int level, vector<int>& out, vector<vector<int>>& res) { if (out.size() == k) res.push_back(out); for (int i = level; i <= n; ++i) { out.push_back(i); helper(n, k, i + 1, out, res); out.pop_back(); } } };
对于n = 5, k = 3, 处理的结果如下:
1 2 3
1 2 4
1 2 5
1 3 4
1 3 5
1 4 5
2 3 4
2 3 5
2 4 5
3 4 5
我们再来看一种迭代的写法,也是一种比较巧妙的方法。这里每次先递增最右边的数字,存入结果res中,当右边的数字超过了n,则增加其左边的数字,然后将当前数组赋值为左边的数字,再逐个递增,直到最左边的数字也超过了n,停止循环。对于n=4, k=2时,遍历的顺序如下所示:
0 0 #initialization
1 0 1 1 #push_back 1 2 #push_back 1 3 #push_back 1 4 #push_back 1 5 2 5 2 2 #push_back 2 3 #push_back 2 4 #push_back ... 3 4 #push_back 3 5 4 5 4 4 4 5 5 5 #stop
解法二:
class Solution { public: vector<vector<int>> combine(int n, int k) { vector<vector<int>> res; vector<int> out(k, 0); int i = 0; while (i >= 0) { ++out[i]; if (out[i] > n) --i; else if (i == k - 1) res.push_back(out); else { ++i; out[i] = out[i - 1]; } } return res; } };
本文转自博客园Grandyang的博客,原文链接:组合项[LeetCode] Combinations ,如需转载请自行联系原博主。