hadoop主节点(NameNode)备份策略以及恢复方法

简介:

link:http://jiajun.iteye.com/blog/809125

一、dits和fsimage 

首先要提到两个文件edits和fsimage,下面来说说他们是做什么的。

  • 集群中的名称节点(NameNode)会把文件系统的变化以追加保存到日志文件edits中。
  • 当名称节点(NameNode)启动时,会从镜像文件 fsimage 中读取HDFS的状态,并且把edits文件中记录的操作应用到fsimage,也就是合并到fsimage中去。合并后更新fsimage的HDFS状态,创建一个新的edits文件来记录文件系统的变化

那么问题来了,只有在名称节点(NameNode)启动的时候才会合并fsimage和edits,那么久而久之edits文件会越来越大,特别是大型繁忙的HDFS集群。这种情况下,由于某种原因你要重启名称节点(NameNode),那么会花费很长的时间去合并fsimge和edits,然后HDFS才能运行。


二、Secondary NameNode 

目前使用的版本hadoop-0.20.2可以使用Secondary NameNode来解决上面的问题。Secondary NameNode定期合并fsimage和edits日志,把edits日志文件大小控制在一个限度下。因为内存需求和NameNode差不多(On the same order),所以Sencondary NameNode通常要运行在另外个机器上。

secondary NameNode配置在conf/masters文件,启动命令:bin/start-dfs.sh(如果你使用不建议的start-all.sh也是会启动的)。


三、什么时候checkpiont 

secondary NameNode 什么时候执行checkpoint来合并fsimage和eidts。呢?有两个配置参数控制:

  • fs.checkpoint.period 指定两次checkpoint的最大时间间隔,默认3600秒。
  • fs.checkpoint.size 规定edits文件的最大值,一旦超过这个值则强制checkpoint,不管是否到达最大时间间隔。默认大小是64M。

secondary NameNode 保存最后一次checkpoint的结果,存储结构和主节点(NameNode)的一样,所以主节点(NameNode)可以随时来读取。


如果你没有启动secondary NameNode 那么可以试试 bin/hadoop secondarynamenode -checkpoint 甚至 bin/hadoop secondarynamenode -checkpoint force. 看看生成的文件。

 

checkpoint可以解决重启NameNode时间过长的弊端。另外还有偏方:


四、Import Checkpoint(恢复数据) 

如果主节点挂掉了,硬盘数据需要时间恢复或者不能恢复了,现在又想立刻恢复HDFS,这个时候就可以import checkpoint。步骤如下:

  • 拿一台和原来机器一样的机器,包括配置和文件,一般来说最快的是拿你节点机器中的一台,立马能用(部分配置要改成NameNode的配置)
  • 创建一个空的文件夹,该文件夹就是配置文件中dfs.name.dir所指向的文件夹。
  • 拷贝你的secondary NameNode checkpoint出来的文件,到某个文件夹,该文件夹为fs.checkpoint.dir指向的文件夹
  • 执行命令bin/hadoop namenode -importCheckpoint

这样NameNode会读取checkpoint文件,保存到dfs.name.dir。但是如果你的dfs.name.dir包含合法的fsimage,是会执行失败的。因为NameNode会检查fs.checkpoint.dir目录下镜像的一致性,但是不会去改动它。 

值得推荐的是,你要注意备份你的dfs.name.dir和 ${fs.checkpoint.dir}/dfs/namesecondary。


五、Checkpoint Node 和 Backup Node 


在后续版本中hadoop-0.21.0,还提供了另外的方法来做checkpoint:Checkpoint Node 和 Backup Node。则两种方式要比secondary NameNode好很多。所以 The Secondary NameNode has been deprecated. Instead, consider using the Checkpoint Node or Backup Node.

Checkpoint Node像是secondary NameNode的改进替代版,Backup Node提供更大的便利,这里就不再介绍了。

 

切换namenode之后发现 进入的安全模式如下

$ hadoop dfsadmin -report
Safe mode is ON

 

解决方案有两种

1)执行命令:bin/hadoop dfsadmin -safemode leave
dfsadmin -safemode value 参数value的说明如下:
enter - 进入安全模式
leave - 强制NameNode离开安全模式
get -  返回安全模式是否开启的信息
wait - 等待安全模式结束。
2)bin/hadoop fsck /
 
第一种方法,需要每次都执行一遍,很纠结~
第二种方法,如果数据多,那执行起来会很慢,没办法,慢慢等吧。
 

[hadoop@vm×× name]$ hadoop fsck /
FSCK started by hadoop (auth:SIMPLE) from /×.×.×.× for path / at Thu Apr 16 15:31:10 CST 2015
..Status: HEALTHY
 Total size: 109836279 B
 Total dirs: 10
 Total files: 2
 Total blocks (validated): 2 (avg. block size 54918139 B)
 Minimally replicated blocks: 2 (100.0 %)
 Over-replicated blocks: 0 (0.0 %)
 Under-replicated blocks: 0 (0.0 %)
 Mis-replicated blocks:  0 (0.0 %)
 Default replication factor: 1
 Average block replication: 1.0
 Corrupt blocks:  0
 Missing replicas:  0 (0.0 %)
 Number of data-nodes:  4
 Number of racks:  1
FSCK ended at Thu Apr 16 15:31:10 CST 2015 in 4 milliseconds


The filesystem under path '/' is HEALTHY



本文转自茄子_2008博客园博客,原文链接:http://www.cnblogs.com/xd502djj/p/4425990.html,如需转载请自行联系原作者。


目录
相关文章
|
3月前
|
分布式计算 Hadoop Shell
Hadoop-35 HBase 集群配置和启动 3节点云服务器 集群效果测试 Shell测试
Hadoop-35 HBase 集群配置和启动 3节点云服务器 集群效果测试 Shell测试
97 4
|
3月前
|
存储 分布式计算 资源调度
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(一)
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(一)
100 5
|
3月前
|
资源调度 数据可视化 大数据
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(二)
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(二)
43 4
|
3月前
|
大数据 网络安全 数据安全/隐私保护
大数据-03-Hadoop集群 免密登录 超详细 3节点云 分发脚本 踩坑笔记 SSH免密 集群搭建(二)
大数据-03-Hadoop集群 免密登录 超详细 3节点云 分发脚本 踩坑笔记 SSH免密 集群搭建(二)
176 5
|
3月前
|
XML 分布式计算 资源调度
大数据-02-Hadoop集群 XML配置 超详细 core-site.xml hdfs-site.xml 3节点云服务器 2C4G HDFS Yarn MapRedece(一)
大数据-02-Hadoop集群 XML配置 超详细 core-site.xml hdfs-site.xml 3节点云服务器 2C4G HDFS Yarn MapRedece(一)
212 5
|
3月前
|
分布式计算 Hadoop Shell
Hadoop-36 HBase 3节点云服务器集群 HBase Shell 增删改查 全程多图详细 列族 row key value filter
Hadoop-36 HBase 3节点云服务器集群 HBase Shell 增删改查 全程多图详细 列族 row key value filter
70 3
|
3月前
|
XML 大数据 网络安全
大数据-03-Hadoop集群 免密登录 超详细 3节点云 分发脚本 踩坑笔记 SSH免密 集群搭建(一)
大数据-03-Hadoop集群 免密登录 超详细 3节点云 分发脚本 踩坑笔记 SSH免密 集群搭建(一)
83 4
|
3月前
|
SQL 存储 数据管理
Hadoop-15-Hive 元数据管理与存储 Metadata 内嵌模式 本地模式 远程模式 集群规划配置 启动服务 3节点云服务器实测
Hadoop-15-Hive 元数据管理与存储 Metadata 内嵌模式 本地模式 远程模式 集群规划配置 启动服务 3节点云服务器实测
74 2
|
3月前
|
分布式计算 Java Hadoop
Hadoop-30 ZooKeeper集群 JavaAPI 客户端 POM Java操作ZK 监听节点 监听数据变化 创建节点 删除节点
Hadoop-30 ZooKeeper集群 JavaAPI 客户端 POM Java操作ZK 监听节点 监听数据变化 创建节点 删除节点
84 1
|
3月前
|
分布式计算 Hadoop Unix
Hadoop-28 ZooKeeper集群 ZNode简介概念和测试 数据结构与监听机制 持久性节点 持久顺序节点 事务ID Watcher机制
Hadoop-28 ZooKeeper集群 ZNode简介概念和测试 数据结构与监听机制 持久性节点 持久顺序节点 事务ID Watcher机制
58 1

相关实验场景

更多