Java并发编程:同步容器

本文涉及的产品
容器镜像服务 ACR,镜像仓库100个 不限时长
简介:

Java并发编程:同步容器

  为了方便编写出线程安全的程序,Java里面提供了一些线程安全类和并发工具,比如:同步容器、并发容器、阻塞队列、Synchronizer(比如CountDownLatch)。今天我们就来讨论下同步容器。

  以下是本文的目录大纲:

  一.为什么会出现同步容器?

  二.Java中的同步容器类

  三.同步容器的缺陷

  若有不正之处请多多谅解,并欢迎批评指正。

  请尊重作者劳动成果,转载请标明原文链接:

  http://www.cnblogs.com/dolphin0520/p/3933404.html

一.为什么会出现同步容器?

  在Java的集合容器框架中,主要有四大类别:List、Set、Queue、Map。

  List、Set、Queue接口分别继承了Collection接口,Map本身是一个接口。

  注意Collection和Map是一个顶层接口,而List、Set、Queue则继承了Collection接口,分别代表数组、集合和队列这三大类容器。

  像ArrayList、LinkedList都是实现了List接口,HashSet实现了Set接口,而Deque(双向队列,允许在队首、队尾进行入队和出队操作)继承了Queue接口,PriorityQueue实现了Queue接口。另外LinkedList(实际上是双向链表)实现了了Deque接口。

  像ArrayList、LinkedList、HashMap这些容器都是非线程安全的。

  如果有多个线程并发地访问这些容器时,就会出现问题。

  因此,在编写程序时,必须要求程序员手动地在任何访问到这些容器的地方进行同步处理,这样导致在使用这些容器的时候非常地不方便。

  所以,Java提供了同步容器供用户使用。

二.Java中的同步容器类

  在Java中,同步容器主要包括2类:

  1)Vector、Stack、HashTable

  2)Collections类中提供的静态工厂方法创建的类

  Vector实现了List接口,Vector实际上就是一个数组,和ArrayList类似,但是Vector中的方法都是synchronized方法,即进行了同步措施。

  Stack也是一个同步容器,它的方法也用synchronized进行了同步,它实际上是继承于Vector类。

  HashTable实现了Map接口,它和HashMap很相似,但是HashTable进行了同步处理,而HashMap没有。

  Collections类是一个工具提供类,注意,它和Collection不同,Collection是一个顶层的接口。在Collections类中提供了大量的方法,比如对集合或者容器进行排序、查找等操作。最重要的是,在它里面提供了几个静态工厂方法来创建同步容器类,如下图所示:

  

  

三.同步容器的缺陷

  从同步容器的具体实现源码可知,同步容器中的方法采用了synchronized进行了同步,那么很显然,这必然会影响到执行性能,另外,同步容器就一定是真正地完全线程安全吗?不一定,这个在下面会讲到。

  我们首先来看一下传统的非同步容器和同步容器的性能差异,我们以ArrayList和Vector为例:

1.性能问题

  我们先通过一个例子看一下Vector和ArrayList在插入数据时性能上的差异:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
public  class  Test {
     public  static  void  main(String[] args)  throws  InterruptedException {
         ArrayList<Integer> list =  new  ArrayList<Integer>();
         Vector<Integer> vector =  new  Vector<Integer>();
         long  start = System.currentTimeMillis();
         for ( int  i= 0 ;i< 100000 ;i++)
             list.add(i);
         long  end = System.currentTimeMillis();
         System.out.println( "ArrayList进行100000次插入操作耗时:" +(end-start)+ "ms" );
         start = System.currentTimeMillis();
         for ( int  i= 0 ;i< 100000 ;i++)
             vector.add(i);
         end = System.currentTimeMillis();
         System.out.println( "Vector进行100000次插入操作耗时:" +(end-start)+ "ms" );
     }
}

  这段代码在我机器上跑出来的结果是:

  

  进行同样多的插入操作,Vector的耗时是ArrayList的两倍。

  这只是其中的一方面性能问题上的反映。

  另外,由于Vector中的add方法和get方法都进行了同步,因此,在有多个线程进行访问时,如果多个线程都只是进行读取操作,那么每个时刻就只能有一个线程进行读取,其他线程便只能等待,这些线程必须竞争同一把锁。

  因此为了解决同步容器的性能问题,在Java 1.5中提供了并发容器,位于java.util.concurrent目录下,并发容器的相关知识将在下一篇文章中讲述。

2.同步容器真的是安全的吗?

  也有有人认为Vector中的方法都进行了同步处理,那么一定就是线程安全的,事实上这可不一定。看下面这段代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
public  class  Test {
     static  Vector<Integer> vector =  new  Vector<Integer>();
     public  static  void  main(String[] args)  throws  InterruptedException {
         while ( true ) {
             for ( int  i= 0 ;i< 10 ;i++)
                 vector.add(i);
             Thread thread1 =  new  Thread(){
                 public  void  run() {
                     for ( int  i= 0 ;i<vector.size();i++)
                         vector.remove(i);
                 };
             };
             Thread thread2 =  new  Thread(){
                 public  void  run() {
                     for ( int  i= 0 ;i<vector.size();i++)
                         vector.get(i);
                 };
             };
             thread1.start();
             thread2.start();
             while (Thread.activeCount()> 10 )   {
                 
             }
         }
     }
}

  在我机器上运行的结果:

  

  正如大家所看到的,这段代码报错了:数组下标越界。

  也许有朋友会问:Vector是线程安全的,为什么还会报这个错?很简单,对于Vector,虽然能保证每一个时刻只能有一个线程访问它,但是不排除这种可能:

  当某个线程在某个时刻执行这句时:

1
2
for ( int  i= 0 ;i<vector.size();i++)
     vector.get(i);

  假若此时vector的size方法返回的是10,i的值为9

  然后另外一个线程执行了这句:

1
2
for ( int  i= 0 ;i<vector.size();i++)
     vector.remove(i);

  将下标为9的元素删除了。

  那么通过get方法访问下标为9的元素肯定就会出问题了。

  因此为了保证线程安全,必须在方法调用端做额外的同步措施,如下面所示:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
public  class  Test {
     static  Vector<Integer> vector =  new  Vector<Integer>();
     public  static  void  main(String[] args)  throws  InterruptedException {
         while ( true ) {
             for ( int  i= 0 ;i< 10 ;i++)
                 vector.add(i);
             Thread thread1 =  new  Thread(){
                 public  void  run() {
                     synchronized  (Test. class ) {    //进行额外的同步
                         for ( int  i= 0 ;i<vector.size();i++)
                             vector.remove(i);
                     }
                 };
             };
             Thread thread2 =  new  Thread(){
                 public  void  run() {
                     synchronized  (Test. class ) {
                         for ( int  i= 0 ;i<vector.size();i++)
                             vector.get(i);
                     }
                 };
             };
             thread1.start();
             thread2.start();
             while (Thread.activeCount()> 10 )   {
                 
             }
         }
     }
}


 3. ConcurrentModificationException异常

  在对Vector等容器并发地进行迭代修改时,会报ConcurrentModificationException异常,关于这个异常将会在后续文章中讲述。

  但是在并发容器中不会出现这个问题。

  参考资料:

  《深入理解Java虚拟机》

  《Java并发编程实战》

  http://thinkgeek.diandian.com/post/2012-03-24/17905694

  http://blog.csdn.net/cutesource/article/details/5780740


本文转载自海 子博客园博客,原文链接:http://www.cnblogs.com/dolphin0520/p/3933404.html如需转载自行联系原作者

相关文章
|
3月前
|
Java 编译器 开发者
深入理解Java内存模型(JMM)及其对并发编程的影响
【9月更文挑战第37天】在Java的世界里,内存模型是隐藏在代码背后的守护者,它默默地协调着多线程环境下的数据一致性和可见性问题。本文将揭开Java内存模型的神秘面纱,带领读者探索其对并发编程实践的深远影响。通过深入浅出的方式,我们将了解内存模型的基本概念、工作原理以及如何在实际开发中正确应用这些知识,确保程序的正确性和高效性。
|
30天前
|
安全 Java 程序员
深入理解Java内存模型与并发编程####
本文旨在探讨Java内存模型(JMM)的复杂性及其对并发编程的影响,不同于传统的摘要形式,本文将以一个实际案例为引子,逐步揭示JMM的核心概念,包括原子性、可见性、有序性,以及这些特性在多线程环境下的具体表现。通过对比分析不同并发工具类的应用,如synchronized、volatile关键字、Lock接口及其实现等,本文将展示如何在实践中有效利用JMM来设计高效且安全的并发程序。最后,还将简要介绍Java 8及更高版本中引入的新特性,如StampedLock,以及它们如何进一步优化多线程编程模型。 ####
31 0
|
2月前
|
缓存 Java 开发者
Java多线程并发编程:同步机制与实践应用
本文深入探讨Java多线程中的同步机制,分析了多线程并发带来的数据不一致等问题,详细介绍了`synchronized`关键字、`ReentrantLock`显式锁及`ReentrantReadWriteLock`读写锁的应用,结合代码示例展示了如何有效解决竞态条件,提升程序性能与稳定性。
163 6
|
2月前
|
存储 安全 Java
Java多线程编程中的并发容器:深入解析与实战应用####
在本文中,我们将探讨Java多线程编程中的一个核心话题——并发容器。不同于传统单一线程环境下的数据结构,并发容器专为多线程场景设计,确保数据访问的线程安全性和高效性。我们将从基础概念出发,逐步深入到`java.util.concurrent`包下的核心并发容器实现,如`ConcurrentHashMap`、`CopyOnWriteArrayList`以及`BlockingQueue`等,通过实例代码演示其使用方法,并分析它们背后的设计原理与适用场景。无论你是Java并发编程的初学者还是希望深化理解的开发者,本文都将为你提供有价值的见解与实践指导。 --- ####
|
2月前
|
存储 缓存 安全
Java内存模型(JMM):深入理解并发编程的基石####
【10月更文挑战第29天】 本文作为一篇技术性文章,旨在深入探讨Java内存模型(JMM)的核心概念、工作原理及其在并发编程中的应用。我们将从JMM的基本定义出发,逐步剖析其如何通过happens-before原则、volatile关键字、synchronized关键字等机制,解决多线程环境下的数据可见性、原子性和有序性问题。不同于常规摘要的简述方式,本摘要将直接概述文章的核心内容,为读者提供一个清晰的学习路径。 ####
47 2
|
2月前
|
设计模式 安全 Java
Java 多线程并发编程
Java多线程并发编程是指在Java程序中使用多个线程同时执行,以提高程序的运行效率和响应速度。通过合理管理和调度线程,可以充分利用多核处理器资源,实现高效的任务处理。本内容将介绍Java多线程的基础概念、实现方式及常见问题解决方法。
99 0
|
3月前
|
存储 搜索推荐 C++
【C++篇】深度剖析C++ STL:玩转 list 容器,解锁高效编程的秘密武器2
【C++篇】深度剖析C++ STL:玩转 list 容器,解锁高效编程的秘密武器
69 2
|
3月前
|
消息中间件 NoSQL Kafka
Flink-10 Flink Java 3分钟上手 Docker容器化部署 JobManager TaskManager Kafka Redis Dockerfile docker-compose
Flink-10 Flink Java 3分钟上手 Docker容器化部署 JobManager TaskManager Kafka Redis Dockerfile docker-compose
78 4
|
3月前
|
Kubernetes Cloud Native 流计算
Flink-12 Flink Java 3分钟上手 Kubernetes云原生下的Flink集群 Rancher Stateful Set yaml详细 扩容缩容部署 Docker容器编排
Flink-12 Flink Java 3分钟上手 Kubernetes云原生下的Flink集群 Rancher Stateful Set yaml详细 扩容缩容部署 Docker容器编排
99 3
|
3月前
|
存储 C++ 容器
【C++篇】深度剖析C++ STL:玩转 list 容器,解锁高效编程的秘密武器1
【C++篇】深度剖析C++ STL:玩转 list 容器,解锁高效编程的秘密武器
76 5