容器化RDS|计算存储分离架构下的 IO 优化

本文涉及的产品
容器镜像服务 ACR,镜像仓库100个 不限时长
简介:

计算存储分离架构

架构示意图如下:

f3dbc8e85ab8eb687d952f20a4c721378637aed5

存储层由分布式文件系统组成,以 Provisoner 的方式集成到 Kubernetes.

在我们看来, 计算存储分离的最大优势在于:

将有状态的数据下沉到存储层,这使得 RDS 在调度时,无需感知计算节点的存储介质,只需调度到满足计算资源要求的 Node,数据库实例启动时,只需在分布式文件系统挂载 mapping 的 volume 即可,可以显著的提高数据库实例的部署密度和计算资源利用率。

其他的好处还有很多,譬如架构更清晰,扩展更方便,问题定位更简单等,这里不赘述。

计算存储分离架构的缺点

俗话说的好:

上帝为你关上一扇窗的同时,再关上一扇门。

如下图所示

196be2e580c457167c72b6b22ee824b640e7bdec

相较本地存储, 网络开销会成为 IO 开销的一部分, 我们认为会带来两个很明显的问题:

  • 数据库是 Latency Sensitive 型应用, 网络延时会极大影响数据库能力(QPS,TPS);
  • 在高密度部署的场景, 网络带宽会成为瓶颈, 可能导致计算 & 存储资源利用不充分。

其实还有一个极其重要的问题,由于kubernetes 本身没有提供 Voting 服务和类似 Oracle Rac 的 Fence 机制,在计算存储分离架构下,当集群发生脑裂,并触发 Node Controller 和Kubelet 的驱逐机制时,可能会出现多个数据库实例同时访问一份数据文件导致 DataCorruption 的情况,数据的损失对用户而言是不可估量也不可忍受的。

我们在 kubernetes 1.7.8 下使用 Oracle , MySQL 都可以100%复现这个场景,通过在 Kubernetes 上添加 Fence 机制,我们已解决该问题。如果大家有兴趣,会再做专门的分享。

下面,就需要结合 MySQL 的特性来进行有针对性的优化。

以下测试方案的设计,测试数据的梳理来自于沃趣科技MySQL专家@董大爷 和 @波多野老师。

DoubleWrite

在 MySQL 中我们首先想到了 DoubleWrite. 首先看下官方解释,它是干什么的 :

The InnoDB doublewrite buffer was implemented to recover from half-written pages. 
This can happen when there's a power failure while InnoDB is writing a page to disk. On reading that page, 
InnoDB can discover the corruption from the mismatch of the page checksum. However, in order to recover, 
an intact copy of the page would be needed.

The double write buffer provides such a copy.

Whenever InnoDB flushes a page to disk, it is first written to the double write buffer. 
Only when the buffer is safely flushed to disk will InnoDB write the page to the final destination. 
When recovering, InnoDB scans the double write buffer and for each valid page in the buffer checks if the page in the data file is valid too.

Although data is written twice, the doublewrite buffer does not require twice as much I/O, 
as data is written to the buffer in a large sequential chunk with a single fsync() call. 
There is extra time consumed however, and the effect becomes visible with fast storage and a heavy write load.

简单说 DoubleWrite 的实现是防止数据页写入时发生故障导致页损坏(partial write),所以每次写数据文件时都要将一份数据写到共享表空间中,当启动时发现数据页 Checkum 校验不正确时会使用共享表空间中副本进行恢复,从 DoubleWrite 实现来看这部分会产生一定量的 IO .所以:

最好的优化就是减少 IO, 在底层存储介质或文件系统支持 Atomic Write的前提下, 可以关闭MySQL 的 DoubleWrite 以减少 IO

单机架构 : 关闭 DoubleWrite

MariaDB 已支持该功能(底层存储介质需支持 Atomic Write ),并在单机环境做了相关测试。数据如下:

9d5358096bf908095756833f6615a1933472e2c3

结论:单机环境下,启用Atomic Write(关闭 DoubleWrite )能立即带来30%左右的写性能改善。DoubleWrite

原文地址 : http://blog.mariadb.org/mariadb-introduces-atomic-writes/

计算存储分离架构 : 关闭 DoubleWrite

所以, 重点是我们需要测试一下在计算存储分离架构下(分布式存储必须支持 Atomic Write ), 关闭DoubleWrite Buffer 的收益。

测试场景

  • 采用Sysbench 模拟 OLTP 敷在模型 (跟 MariaDB 相同)
  • 数据库版本选择了更流行的 MySQL 5.7.19 (测试时的最新版本)
  • 由本地存储改为分布式文件系统
  • 测试数据量, 数据文件大写

        1、10GB

        2、100GB

测试结果 : 10GB数据量

Sysbench 指标:

98934f028634e26201c10848fe3dc1ee979ea74b

分布式文件系统指标:

771f957687883bee62ba481d96ec0369016ea01a

在计算存储分离架构下, 启用Atomic Write(关闭 DoubleWrite ), 10GB数据量, 因为大部分数据已经缓存到数据库 buffer cache 中, 所以在 IO 不是瓶颈的情况下:

Sysbench指标, 提升不明显

       tps ↑0.2656%,qps ↑0.2797%,rst ↑14.9651%

分布式文件系统指标

       Throughput 下降53%, 显著优化了网络带宽

测试结果 : 100GB数据量

Sysbench 指标:

1182c9ac6dc6ca60a15d14cb0944e3bbd637d530

分布式文件系统指标:

b96c2e5751b75cd499e1cc0322578f50be844614

在计算存储分离架构下, 启用Atomic Write(关闭 DoubleWrite ), 100GB数据量, 因为大部分数据无法缓存到数据库 buffer cache 中, 所以在 IO 是瓶颈的情况下:

Sysbench指标, 提升明显:

       TPS ↑28.0892%,QPS ↑28.0893%,RST ↓169.2033%

分布式文件系统指标

       IOPS 提升22.3%

       Latency 下降 39%

       在IOPS 提升22.3%的情况下, Throughput 仅多消耗 3.6%


原文发布时间为:2018-01-11

本文作者:熊中哲

本文来自云栖社区合作伙伴“老叶茶馆”,了解相关信息可以关注“老叶茶馆”微信公众号

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://www.aliyun.com/product/rds/mysql 
相关文章
|
23天前
|
存储 数据挖掘 BI
2-5 倍性能提升,30% 成本降低,阿里云 SelectDB 存算分离架构助力波司登集团实现降本增效
波司登集团升级大数据架构,采用阿里云数据库 SelectDB 版,实现资源隔离与弹性扩缩容,查询性能提升 2-5 倍,总体成本降低 30% 以上,效率提升 30%,助力销售旺季高效运营。
101 9
|
3月前
|
SQL 缓存 关系型数据库
MySQL 慢查询是怎样优化的
本文深入解析了MySQL查询速度变慢的原因及优化策略,涵盖查询缓存、执行流程、SQL优化、执行计划分析(如EXPLAIN)、查询状态查看等内容,帮助开发者快速定位并解决慢查询问题。
140 0
|
25天前
|
机器学习/深度学习 存储 人工智能
RAG系统文本检索优化:Cross-Encoder与Bi-Encoder架构技术对比与选择指南
本文将深入分析这两种编码架构的技术原理、数学基础、实现流程以及各自的优势与局限性,并探讨混合架构的应用策略。
113 10
RAG系统文本检索优化:Cross-Encoder与Bi-Encoder架构技术对比与选择指南
|
25天前
|
缓存 关系型数据库 MySQL
降低MySQL高CPU使用率的优化策略。
通过上述方法不断地迭代改进,在实际操作中需要根据具体场景做出相对合理判断。每一步改进都需谨慎评估其变动可能导致其他方面问题,在做任何变动前建议先在测试环境验证其效果后再部署到生产环境中去。
67 6
|
2月前
|
存储 SQL 关系型数据库
MySQL 核心知识与索引优化全解析
本文系统梳理了 MySQL 的核心知识与索引优化策略。在基础概念部分,阐述了 char 与 varchar 在存储方式和性能上的差异,以及事务的 ACID 特性、并发事务问题及对应的隔离级别(MySQL 默认 REPEATABLE READ)。 索引基础部分,详解了 InnoDB 默认的 B+tree 索引结构(多路平衡树、叶子节点存数据、双向链表支持区间查询),区分了聚簇索引(数据与索引共存,唯一)和二级索引(数据与索引分离,多个),解释了回表查询的概念及优化方法,并分析了 B+tree 作为索引结构的优势(树高低、效率稳、支持区间查询)。 索引优化部分,列出了索引创建的六大原则
|
1月前
|
数据采集 机器学习/深度学习 运维
从数据感知到决策优化:MyEMS 开源能源管理系统的技术架构与实践效能解析
MyEMS 是一款开源能源管理系统,采用分层解耦与模块化设计,支持多能源协同监测与智能优化调度。系统具备数据采集、分析、预警、碳核算等功能,助力企业实现节能降耗、安全管控与低碳转型,已在百余家全球企业落地应用,具备自主可控、成本低、安全性强等优势,面向虚拟电厂、数字孪生等未来场景持续演进。
97 0
|
2月前
|
缓存 Java 数据库
Java 项目分层架构实操指南及长尾关键词优化方案
本指南详解基于Spring Boot与Spring Cloud的Java微服务分层架构,以用户管理系统为例,涵盖技术选型、核心代码实现、服务治理及部署实践,助力掌握现代化Java企业级开发方案。
137 2
|
2月前
|
存储 SQL 关系型数据库
MySQL 动态分区管理:自动化与优化实践
本文介绍了如何利用 MySQL 的存储过程与事件调度器实现动态分区管理,自动化应对数据增长,提升查询性能与数据管理效率,并详细解析了分区创建、冲突避免及实际应用中的关键注意事项。
111 0
|
2月前
|
缓存 监控 API
电商API的微服务架构优化策略
随着电商快速发展,API成为连接用户、商家与系统的核心。本文探讨微服务架构下电商API的优化策略,分析高并发、低延迟与数据一致性等挑战,并提供服务拆分、缓存异步、监控容器化等实践方案,助力构建高性能、高可用的电商系统,提升用户体验与业务效率。
62 0

推荐镜像

更多