AI大事件 | TensorFlow新版本,Marcus怼深度学习Yann LeCun怼回去

简介:

新闻

TensorFlow 发布新版本1.5.0

链接:

https://github.com/tensorflow/tensorflow/releases/tag/v1.5.0-rc0?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI

此版本包括Tensorflow的新执行模式的预览版本和Tensorflow Lite(用于移动和嵌入式设备)预览版本。

Reddit调查:2017机器学习“各种最佳”

链接:

https://www.reddit.com/r/MachineLearning/comments/7nrzhn/d_results_from_best_of_machine_learning_2017/

Redditors选出了最好的视频,最好的博客文章,最好的新工具,最好的论文,最好的其它。 想要追踪过去一年的重要发展,本文值得一读。

文章 & 教程

一个“贴纸”欺骗深度学习系统将无关图片识别为烤面包机

链接:

https://gizmodo.com/this-simple-sticker-can-trick-neural-networks-into-thin-1821735479?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI

谷歌研究人员开发了一个“迷幻”贴纸,当放置在一个不相关的图像中时,会欺骗深度学习系统,将图像分类为烤面包机。原文戳这里:

https://arxiv.org/abs/1712.09665

GitHub30个最佳机器学习项目

链接:

https://medium.mybridge.co/30-amazing-machine-learning-projects-for-the-past-year-v-2018-b853b8621ac7

MEDIUM.MYBRIDGE.CO – Share

这篇文章比较了8,800个开源机器学习项目,并考虑了受欢迎程度,参与度和新近度,选出了前30名。 它们在Github上平均得到3558个星星。

麻省理工6.S094:自动驾驶深度学习(课程)

链接:

https://selfdrivingcars.mit.edu/?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI

通过搭建无人驾驶车的应用任务介绍深度学习。2018年课程于本周开始,视频将在网站上发布。

人工智能用于药物开发——已被过度炒作

链接:

https://medium.com/the-ai-lab/artificial-intelligence-in-drug-discovery-is-overhyped-examples-from-astrazeneca-harvard-315d69a7f863?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI

人工智能在药物研发方面的投资正在飙升,但它们是否合理? 这篇文章认为,研究人员倾向于高估他们的成就,特别是在制药领域。

深度神经网络的物理对抗实例

链接:

http://bair.berkeley.edu/blog/2017/12/30/yolo-attack/?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI

这篇文章介绍了用最先进的算法来生成数字对抗的实例,并讨论了用一种新的算法来生成在不同的环境条件下物理对抗的例子。

代码,项目和数据

DeepMind控制套件和控制包代码

链接:

https://github.com/deepmind/dm_control?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI

发布在这篇论文中https://arxiv.org/abs/1801.00690,DeepMind Control Suite是一套持续的控制任务,具有标准化的结构和可解释的奖励,旨在作为强化学习代理的性能基准。

Facebook AI Research自动语音识别工具包

链接:

https://github.com/facebookresearch/wav2letter?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI

wav2letter是来自Facebook AI Research的一个简单高效的端到端自动语音识别(ASR)系统。

一个针对迷宫/网格世界的可定制gym环境

链接:

https://github.com/zuoxingdong/gym-maze?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI

这个库包含一个可定制的gym环境,适用于各种迷宫或网格世界。 迷宫或网格世界环境在强化学习社区中经常被使用。

自动化的错误分类

链接:

http://bugtriage.mybluemix.net/?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI

一种新颖的使用基于注意力的深度双向递归神经网络的错误报告呈现算法。

论文

[1712.09665]对抗补丁

链接:

https://arxiv.org/abs/1712.09665?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI

一种在现实世界中创建通用、强大、有针对性的对抗图像补丁的方法。这些补丁是通用的——因为它们可以用来攻击任何场景,也是强大的——因为它们可以完成各种各样的变形,而且是有针对性的——因为它们可以让分类器输出任何目标类。 这些对抗补丁可以打印、添加到任何场景、拍照,并呈现给图像分类器。

[1801.00631]深度学习:批判性评论

链接:

https://arxiv.org/abs/1801.00631

深度学习这个领域由Hinton于2012年发表ImageNet深度网络模型的论文(现在已然是经典之作)重新点燃。 这个领域在接下来的五年中发现了什么? 在语音识别,图像识别,游戏玩法等方面取得长足进步的背景下,作者在深度学习中提出了十点关注,并提出要实现通用人工智能,深度学习必须辅以的其他技术。

[1801.00690] DeepMind控件

链接:

https://arxiv.org/abs/1801.00690

DeepMind控制套件是一套连续的控制任务,具有标准化的结构和可解释的奖励,旨在作为强化学习代理的性能基准。 这些任务用Python编写,由MuJoCo物理引擎驱动,使得它们易于使用和修改。包含了几个学习算法的基准。

[1801.01078v1] 卷积神经网络的最新进展

链接:

https://arxiv.org/abs/1801.01078?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI

面向新手和老司机,对RNNs及新进展进行了调查, 解释了基本原理和最新进展,并介绍了研究方面的挑战。


原文发布时间为:2018-01-09

本文作者:文摘菌

本文来自云栖社区合作伙伴“大数据文摘”,了解相关信息可以关注“大数据文摘”微信公众号

相关文章
|
7月前
|
人工智能 数据安全/隐私保护 Python
小红书图文生成器,小红书AI图文生成工具,python版本软件
Pillow库自动生成符合平台尺寸要求的配图7;3)利用Playwright实现自动化发布流程6。
|
9月前
|
机器学习/深度学习 人工智能 供应链
从概念到商业价值:AI、机器学习与深度学习全景指南
在这个科技飞速发展的时代🚀,人工智能正以惊人的速度渗透到我们的生活和工作中👀。但面对铺天盖地的AI术语和概念,很多人感到困惑不已😣。"AI"、"机器学习"、"深度学习"和"神经网络"到底有什么区别?它们如何相互关联?如何利用这些技术提升工作效率和创造价值?
473 0
|
11月前
|
人工智能 运维 监控
从大规模恶意攻击 DeepSeek 事件看 AI 创新隐忧:安全可观测体系建设刻不容缓
唯有通过全行业的协同努力,加强整体、完善的网络安全可观测建设,才能为 AI 技术的创新和发展构建一个安全而稳固的环境。我们期盼并相信,在攻克这些网络安全难题之后,AI 创新将迎来更加安全、灿烂的未来。
|
7月前
|
机器学习/深度学习 人工智能 PyTorch
AI 基础知识从 0.2 到 0.3——构建你的第一个深度学习模型
本文以 MNIST 手写数字识别为切入点,介绍了深度学习的基本原理与实现流程,帮助读者建立起对神经网络建模过程的系统性理解。
732 15
AI 基础知识从 0.2 到 0.3——构建你的第一个深度学习模型
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
AI 基础知识从 0.3 到 0.4——如何选对深度学习模型?
本系列文章从机器学习基础出发,逐步深入至深度学习与Transformer模型,探讨AI关键技术原理及应用。内容涵盖模型架构解析、典型模型对比、预训练与微调策略,并结合Hugging Face平台进行实战演示,适合初学者与开发者系统学习AI核心知识。
581 15
|
7月前
|
存储 网络协议 人工智能
我在网上看到了一篇关于将智能AI、脑机接口接入到大脑的文章之后大发灵感,我现在写写我自己的版本
本项目设想一种脑机接口系统,结合阿里云操作系统与量子意识技术,实现用户通过心灵感应与AI交互、下载知识、远程医疗等操作。系统分为侵入式与非侵入式设备,支持意识上网、意念输入、跨物种通讯等功能,并构建“全宇宙意识互联网”架构,实现与传统网络的数据互通,探索未来人机交互与通信新形态。
|
7月前
|
人工智能 小程序 开发者
AI运动识别插件版本再发布迭代更新,大量新特性更新
上周,我们对全景AI运动解决方案的uni APP版与小程序版插件进行了新一版迭代更新。其中,uni APP版本显著提升了识别检测性能,修复了已知问题,并新增多项实用功能,全面优化用户体验。在v0.7.0版本中,推出了`convertFrameToBase64()`接口,便于开发者在体测、赛事等场景中更高效地处理帧图像,简化开发流程,助力AI运动应用快速实现。
|
9月前
|
存储 人工智能 安全
【实测分享】本地AI工具AiPy更新版本v0.1.28
AiPy是一款出色的本地AI工具,2025年5月21日发布v0.1.28版本。它以本地化处理保障数据隐私,新增Trustoken联网搜索、云端私密存储等功能,支持多模型选择如阿里Qwen与腾讯Hunyuan,优化任务处理逻辑,提升效率。操作便捷升级,新老用户均可轻松上手。未来还将推出GUI客户端2.0等新功能,值得期待!(下载地址:https://www.aipyaipy.com/#download)快来体验吧!
【实测分享】本地AI工具AiPy更新版本v0.1.28
|
10月前
|
机器学习/深度学习 人工智能 运维
AI“捕风捉影”:深度学习如何让网络事件检测更智能?
AI“捕风捉影”:深度学习如何让网络事件检测更智能?
408 8
|
10月前
|
人工智能 运维 监控
从大规模恶意攻击 DeepSeek 事件看 AI 创新隐忧:安全可观测体系建设刻不容缓
本文探讨了中国大模型DeepSeek在全球范围内的成功及其面临的网络安全挑战。DeepSeek以低成本、高性能的特点迅速走红,甚至超越ChatGPT,但同时也遭受了大规模恶意攻击,如DDoS和密码暴力破解。文章分析了这些攻击对AI行业的影响,并提出通过阿里云构建安全可观测体系的解决方案,包括流量监控、日志审计与异常检测等,为AI技术的安全发展提供保障。
378 1