Assume you have an array of length n initialized with all 0's and are given k update operations.
Each operation is represented as a triplet: [startIndex, endIndex, inc] which increments each element of subarray A[startIndex ... endIndex] (startIndex and endIndex inclusive) with inc.
Return the modified array after all k operations were executed.
Example:
Given: length = 5, updates = [ [1, 3, 2], [2, 4, 3], [0, 2, -2] ] Output: [-2, 0, 3, 5, 3]
Explanation:
Initial state: [ 0, 0, 0, 0, 0 ] After applying operation [1, 3, 2]: [ 0, 2, 2, 2, 0 ] After applying operation [2, 4, 3]: [ 0, 2, 5, 5, 3 ] After applying operation [0, 2, -2]: [-2, 0, 3, 5, 3 ]
Hint:
- Thinking of using advanced data structures? You are thinking it too complicated.
- For each update operation, do you really need to update all elements between i and j?
- Update only the first and end element is sufficient.
- The optimal time complexity is O(k + n) and uses O(1) extra space.
Credits:
Special thanks to @vinod23 for adding this problem and creating all test cases.
这道题刚添加的时候我就看到了,当时只有1个提交,0个接受,于是我赶紧做,提交成功后发现我是第一个提交成功的,哈哈,头一次做沙发啊,有点小激动~这道题的提示说了我们肯定不能把范围内的所有数字都更新,而是只更新开头结尾两个数字就行了,那么我们的做法就是在开头坐标startIndex位置加上inc,而在结束位置加1的地方加上-inc,那么根据题目中的例子,我们可以得到一个数组,nums = {-2, 2, 3, 2, -2, -3},然后我们发现对其做累加和就是我们要求的结果result = {-2, 0, 3, 5, 3},参见代码如下:
解法一:
class Solution { public: vector<int> getModifiedArray(int length, vector<vector<int>>& updates) { vector<int> res, nums(length + 1, 0); for (int i = 0; i < updates.size(); ++i) { nums[updates[i][0]] += updates[i][2]; nums[updates[i][1] + 1] -= updates[i][2]; } int sum = 0; for (int i = 0; i < length; ++i) { sum += nums[i]; res.push_back(sum); } return res; } };
我们可以在空间上稍稍优化下上面的代码,用res来代替nums,最后把res中最后一个数字去掉即可,参见代码如下:
解法二:
class Solution { public: vector<int> getModifiedArray(int length, vector<vector<int>>& updates) { vector<int> res(length + 1); for (auto a : updates) { res[a[0]] += a[2]; res[a[1] + 1] -= a[2]; } for (int i = 1; i < res.size(); ++i) { res[i] += res[i - 1]; } res.pop_back(); return res; } }
本文转自博客园Grandyang的博客,原文链接:范围相加[LeetCode] Range Addition ,如需转载请自行联系原博主。