1.概述
上一篇我们了解了MapReduce的相关流程,包含MapReduce V2的重构思路,新的设计架构,与MapReduce V1的区别等内容,今天我们在来学习下在Hadoop V2中的序列化的相关内容,其目录如下所示:
- 序列化的由来
- Hadoop序列化依赖图详解
- Writable常用实现类
下面,我们开始学习今天的内容。
2.序列化的由来
我们知道Java语言对序列化提供了非常友好的支持,在定义一个类时,如果我们需要序列化一个类,只需要实现该类的序列化接口即可。场景:让一个AppInfo类能够被序列化,代码如下所示:
/**
*
*/
package cn.hdfs.io;
import java.io.Serializable;
/**
* @author dengjie
* @date Apr 21, 2015
* @description 定义一个可序列化的App信息类
*/
public class AppInfo implements Serializable{
/**
*
*/
private static final long serialVersionUID = 1L;
}
这么定义,不需要其他的操作,Java会自动的处理各种对象关系。虽然,Java的序列化接口易于实现且内建支持,同样,它的不足之处也是暴露无 遗,它占用空间过大,额外的开销导致速度降低。这些缺点对于Hadoop来说是不合适的,导致Hadoop没有采用Java自身的序列化机制,而是 Hadoop自己开发了一套适合自己的序列化机制。
由于 Hadoop 的 MapReduce 和 HDFS 都有通信的需求,需要对通信的对象进行序列化。而且,Hadoop本身需要序列化速度要快,体积要小,占用带宽低等要求。因此,了解Hadoop的序列化 过程是很有必要的,下面我们对Hadoop的序列化内容做进一步学习研究。
注:本文不对Java的Serializable接口做详细赘述,若需了解 ,请参考官方文档:http://docs.oracle.com/javase/7/docs/api/java/io/Serializable.html
3.Hadoop序列化依赖图详解
在Hadoop的序列化机制中,org.apache.hadoop.io 中定义了大量的可序列化对象,他们都实现了 Writable 接口,Writable接口中有两个方法,如下所示:
write:将对象写入字节流。
readFields:从字节流中解析出对象。
Writeable源码如下所示:
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hadoop.io;
import java.io.DataOutput;
import java.io.DataInput;
import java.io.IOException;
import org.apache.hadoop.classification.InterfaceAudience;
import org.apache.hadoop.classification.InterfaceStability;
/**
* A serializable object which implements a simple, efficient, serialization
* protocol, based on {@link DataInput} and {@link DataOutput}.
*
* <p>Any <code>key</code> or <code>value</code> type in the Hadoop Map-Reduce
* framework implements this interface.</p>
*
* <p>Implementations typically implement a static <code>read(DataInput)</code>
* method which constructs a new instance, calls {@link #readFields(DataInput)}
* and returns the instance.</p>
*
* <p>Example:</p>
* <p><blockquote><pre>
* public class MyWritable implements Writable {
* // Some data
* private int counter;
* private long timestamp;
*
* public void write(DataOutput out) throws IOException {
* out.writeInt(counter);
* out.writeLong(timestamp);
* }
*
* public void readFields(DataInput in) throws IOException {
* counter = in.readInt();
* timestamp = in.readLong();
* }
*
* public static MyWritable read(DataInput in) throws IOException {
* MyWritable w = new MyWritable();
* w.readFields(in);
* return w;
* }
* }
* </pre></blockquote></p>
*/
@InterfaceAudience.Public
@InterfaceStability.Stable
public interface Writable {
/**
* Serialize the fields of this object to <code>out</code>.
*
* @param out <code>DataOuput</code> to serialize this object into.
* @throws IOException
*/
void write(DataOutput out) throws IOException;
/**
* Deserialize the fields of this object from <code>in</code>.
*
* <p>For efficiency, implementations should attempt to re-use storage in the
* existing object where possible.</p>
*
* @param in <code>DataInput</code> to deseriablize this object from.
* @throws IOException
*/
void readFields(DataInput in) throws IOException;
}
下面我们来看看Hadoop序列化的依赖图关系,如下图所示:
从上图我们可以看出,WritableComparable接口同时继承了Writable和Comparable接口。
WritableComparable源码如下所示:
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hadoop.io;
import org.apache.hadoop.classification.InterfaceAudience;
import org.apache.hadoop.classification.InterfaceStability;
/**
* A {@link Writable} which is also {@link Comparable}.
*
* <p><code>WritableComparable</code>s can be compared to each other, typically
* via <code>Comparator</code>s. Any type which is to be used as a
* <code>key</code> in the Hadoop Map-Reduce framework should implement this
* interface.</p>
*
* <p>Note that <code>hashCode()</code> is frequently used in Hadoop to partition
* keys. It's important that your implementation of hashCode() returns the same
* result across different instances of the JVM. Note also that the default
* <code>hashCode()</code> implementation in <code>Object</code> does <b>not</b>
* satisfy this property.</p>
*
* <p>Example:</p>
* <p><blockquote><pre>
* public class MyWritableComparable implements WritableComparable<MyWritableComparable> {
* // Some data
* private int counter;
* private long timestamp;
*
* public void write(DataOutput out) throws IOException {
* out.writeInt(counter);
* out.writeLong(timestamp);
* }
*
* public void readFields(DataInput in) throws IOException {
* counter = in.readInt();
* timestamp = in.readLong();
* }
*
* public int compareTo(MyWritableComparable o) {
* int thisValue = this.value;
* int thatValue = o.value;
* return (thisValue < thatValue ? -1 : (thisValue==thatValue ? 0 : 1));
* }
*
* public int hashCode() {
* final int prime = 31;
* int result = 1;
* result = prime * result + counter;
* result = prime * result + (int) (timestamp ^ (timestamp >>> 32));
* return result
* }
* }
* </pre></blockquote></p>
*/
@InterfaceAudience.Public
@InterfaceStability.Stable
public interface WritableComparable<T> extends Writable, Comparable<T> {
}
接着我们再来看看Comparable的源码,代码如下所示:
package java.lang;
import java.util.*;
public interface Comparable<T> {
public int compareTo(T o);
}
通过源码的阅读,我们可以发现,Java的API提供的Comparable接口,它只有一个方法,就是compareTo,该方法用于比较两个对象。
上图中列举了Hadoop序列化接口中的所有类型,这里我们主要研究一些常用的实现类,如IntWriteable,Text,LongWriteable等。
4.Writable常用实现类
首先我们来看看IntWriteable和LongWriteable的源码,具体代码如下所示:
- IntWriteablea
package org.apache.hadoop.io;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.hadoop.classification.InterfaceAudience;
import org.apache.hadoop.classification.InterfaceStability;
/** A WritableComparable for ints. */
@InterfaceAudience.Public
@InterfaceStability.Stable
public class IntWritable implements WritableComparable<IntWritable> {
private int value;
public IntWritable() {}
public IntWritable(int value) { set(value); }
/** Set the value of this IntWritable. */
public void set(int value) { this.value = value; }
/** Return the value of this IntWritable. */
public int get() { return value; }
@Override
public void readFields(DataInput in) throws IOException {
value = in.readInt();
}
@Override
public void write(DataOutput out) throws IOException {
out.writeInt(value);
}
/** Returns true iff <code>o</code> is a IntWritable with the same value. */
@Override
public boolean equals(Object o) {
if (!(o instanceof IntWritable))
return false;
IntWritable other = (IntWritable)o;
return this.value == other.value;
}
@Override
public int hashCode() {
return value;
}
/** Compares two IntWritables. */
@Override
public int compareTo(IntWritable o) {
int thisValue = this.value;
int thatValue = o.value;
return (thisValue<thatValue ? -1 : (thisValue==thatValue ? 0 : 1));
}
@Override
public String toString() {
return Integer.toString(value);
}
/** A Comparator optimized for IntWritable. */
public static class Comparator extends WritableComparator {
public Comparator() {
super(IntWritable.class);
}
@Override
public int compare(byte[] b1, int s1, int l1,
byte[] b2, int s2, int l2) {
int thisValue = readInt(b1, s1);
int thatValue = readInt(b2, s2);
return (thisValue<thatValue ? -1 : (thisValue==thatValue ? 0 : 1));
}
}
static { // register this comparator
WritableComparator.define(IntWritable.class, new Comparator());
}
}
- LongWritable
package org.apache.hadoop.io;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.hadoop.classification.InterfaceAudience;
import org.apache.hadoop.classification.InterfaceStability;
/** A WritableComparable for longs. */
@InterfaceAudience.Public
@InterfaceStability.Stable
public class LongWritable implements WritableComparable<LongWritable> {
private long value;
public LongWritable() {}
public LongWritable(long value) { set(value); }
/** Set the value of this LongWritable. */
public void set(long value) { this.value = value; }
/** Return the value of this LongWritable. */
public long get() { return value; }
@Override
public void readFields(DataInput in) throws IOException {
value = in.readLong();
}
@Override
public void write(DataOutput out) throws IOException {
out.writeLong(value);
}
/** Returns true iff <code>o</code> is a LongWritable with the same value. */
@Override
public boolean equals(Object o) {
if (!(o instanceof LongWritable))
return false;
LongWritable other = (LongWritable)o;
return this.value == other.value;
}
@Override
public int hashCode() {
return (int)value;
}
/** Compares two LongWritables. */
@Override
public int compareTo(LongWritable o) {
long thisValue = this.value;
long thatValue = o.value;
return (thisValue<thatValue ? -1 : (thisValue==thatValue ? 0 : 1));
}
@Override
public String toString() {
return Long.toString(value);
}
/** A Comparator optimized for LongWritable. */
public static class Comparator extends WritableComparator {
public Comparator() {
super(LongWritable.class);
}
@Override
public int compare(byte[] b1, int s1, int l1,
byte[] b2, int s2, int l2) {
long thisValue = readLong(b1, s1);
long thatValue = readLong(b2, s2);
return (thisValue<thatValue ? -1 : (thisValue==thatValue ? 0 : 1));
}
}
/** A decreasing Comparator optimized for LongWritable. */
public static class DecreasingComparator extends Comparator {
@Override
public int compare(WritableComparable a, WritableComparable b) {
return -super.compare(a, b);
}
@Override
public int compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2) {
return -super.compare(b1, s1, l1, b2, s2, l2);
}
}
static { // register default comparator
WritableComparator.define(LongWritable.class, new Comparator());
}
}
从源码IntWritable和LongWriteable中可以看到,两个类中都包含内部类Comparator,该类的作用是用来支持在没 有反序列化的情况下直接对数据进行处理。源码中的compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2)方法不需要创建IntWritable对象,效率比compareTo(Object o)高。
- Text
Text的源码大约有670多行,这里就不贴了,若大家要阅读详细的Text源码,请在Hadoop的org.apache.hadoop.io的包下,找到Text类进行阅读,下面只截取Text的部分源码,部分源码如下:
@Stringable
@InterfaceAudience.Public
@InterfaceStability.Stable
public class Text extends BinaryComparable
implements WritableComparable<BinaryComparable> {
// 详细代码省略......
}
从源码中看出,Text继承类BinaryComparable基类,并实现了 WritableComparable<BinaryComparable>接口,WritableComparable在上面已赘述过了, 下面我们来分析一下BinaryComparable,首先我们来查看一下BinaryComparable的源码,部分源码如下所示:
@InterfaceAudience.Public
@InterfaceStability.Stable
public abstract class BinaryComparable implements Comparable<BinaryComparable> {
// 详细代码省略......
}
我们发现BinaryComparable(实现了Comparable接口)是一个抽象类,由该抽象类的子类去实现了Hadoop二进制的序列化。该抽象类中有两个compareTo方法,代码如下所示:
/**
* Compare bytes from {#getBytes()}.
* @see org.apache.hadoop.io.WritableComparator#compareBytes(byte[],int,int,byte[],int,int)
*/
@Override
public int compareTo(BinaryComparable other) {
if (this == other)
return 0;
return WritableComparator.compareBytes(getBytes(), 0, getLength(),
other.getBytes(), 0, other.getLength());
}
/**
* Compare bytes from {#getBytes()} to those provided.
*/
public int compareTo(byte[] other, int off, int len) {
return WritableComparator.compareBytes(getBytes(), 0, getLength(),
other, off, len);
}
从代码中,我们可以看出,两个compareTo方法中依赖 WritableComparator的静态方法compareBytes来完成二进制数据的比较。另外,从Text类的注视中可以看出,Text是基于 UTF-8编码的Writeable类,注视内容如下所示:
/** This class stores text using standard UTF8 encoding. It provides methods
* to serialize, deserialize, and compare texts at byte level. The type of
* length is integer and is serialized using zero-compressed format. <p>In
* addition, it provides methods for string traversal without converting the
* byte array to a string. <p>Also includes utilities for
* serializing/deserialing a string, coding/decoding a string, checking if a
* byte array contains valid UTF8 code, calculating the length of an encoded
* string.
*/
一般来说,在开发Hadoop项目时,我们认为它等价于Java的String类型,即java.lang.String。
5.总结
通过本篇博客的学习,我们对Hadoop的序列化有了较深的认识,对IntWriteable,LongWriteable,Text等实现类 也有所了解,这对我们在经后开发Hadoop项目,编写相应的MR作业是有所帮助的。在类型的选择上,我们是可以做到心中有数的。
6.结束语
这篇博客就和大家分享到这里,如果大家在研究学习的过程当中有什么问题,可以加群进行讨论或发送邮件给我,我会尽我所能为您解答,与君共勉!