SG函数和SG定理【详解】

简介: 在介绍SG函数和SG定理之前我们先介绍介绍必胜点与必败点吧. 必胜点和必败点的概念:        P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败。        N点:必胜点,处于此情况下,双方操作均正确的情况下必胜。

在介绍SG函数和SG定理之前我们先介绍介绍必胜点与必败点吧.

必胜点和必败点的概念
       P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败。
       N点:必胜点,处于此情况下,双方操作均正确的情况下必胜。
必胜点和必败点的性质
        1、所有终结点是 必败点 P 。(我们以此为基本前提进行推理,换句话说,我们以此为假设)
        2、从任何必胜点N 操作,至少有一种方式可以进入必败点 P。
        3、无论如何操作,必败点P 都只能进入 必胜点 N。
我们研究必胜点和必败点的目的时间为题进行简化,有助于我们的分析。通常我们分析必胜点和必败点都是以终结点进行逆序分析。我们以 hdu 1847 Good Luck in CET-4 Everybody!为例:
当 n = 0 时,显然为必败点,因为此时你已经无法进行操作了
当 n = 1 时,因为你一次就可以拿完所有牌,故此时为必胜点
当 n = 2 时,也是一次就可以拿完,故此时为必胜点
当 n = 3 时,要么就是剩一张要么剩两张,无论怎么取对方都将面对必胜点,故这一点为必败点。
以此类推,最后你就可以得到;
      n    :   0    1    2    3    4   5    6 ...
position:  P    N   N    P   N   N   P ...
你发现了什么没有,对,他们就是成有规律,使用了 P/N来分析,有没有觉得问题变简单了。
现在给你一个稍微复杂一点点的: hdu 2147 kiki's game

        现在我们就来介绍今天的主角吧。组合游戏的和通常是很复杂的,但是有一种新工具,可以使组合问题变得简单————SG函数和SG定理。

Sprague-Grundy定理(SG定理):

        游戏和的SG函数等于各个游戏SG函数的Nim和。这样就可以将每一个子游戏分而治之,从而简化了问题。而Bouton定理就是Sprague-Grundy定理在Nim游戏中的直接应用,因为单堆的Nim游戏 SG函数满足 SG(x) = x。对博弈不是很清楚的请参照http://www.cnblogs.com/ECJTUACM-873284962/p/6398385.html进行进一步理解。

SG函数:

        首先定义mex(minimal excludant)运算,这是施加于一个集合的运算,表示最小的不属于这个集合的非负整数。例如mex{0,1,2,4}=3、mex{2,3,5}=0、mex{}=0。

        对于任意状态 x , 定义 SG(x) = mex(S),其中 S 是 x 后继状态的SG函数值的集合。如 x 有三个后继状态分别为 SG(a),SG(b),SG(c),那么SG(x) = mex{SG(a),SG(b),SG(c)}。 这样 集合S 的终态必然是空集,所以SG函数的终态为 SG(x) = 0,当且仅当 x 为必败点P时。

【实例】取石子问题

有1堆n个的石子,每次只能取{ 1, 3, 4 }个石子,先取完石子者胜利,那么各个数的SG值为多少?

SG[0]=0,f[]={1,3,4},

x=1 时,可以取走1 - f{1}个石子,剩余{0}个,所以 SG[1] = mex{ SG[0] }= mex{0} = 1;

x=2 时,可以取走2 - f{1}个石子,剩余{1}个,所以 SG[2] = mex{ SG[1] }= mex{1} = 0;

x=3 时,可以取走3 - f{1,3}个石子,剩余{2,0}个,所以 SG[3] = mex{SG[2],SG[0]} = mex{0,0} =1;

x=4 时,可以取走4-  f{1,3,4}个石子,剩余{3,1,0}个,所以 SG[4] = mex{SG[3],SG[1],SG[0]} = mex{1,1,0} = 2;

x=5 时,可以取走5 - f{1,3,4}个石子,剩余{4,2,1}个,所以SG[5] = mex{SG[4],SG[2],SG[1]} =mex{2,0,1} = 3;

以此类推.....

   x        0  1  2  3  4  5  6  7  8....

SG[x]    0  1  0  1  2  3  2  0  1....

由上述实例我们就可以得到SG函数值求解步骤,那么计算1~n的SG函数值步骤如下:

1、使用 数组f 将 可改变当前状态 的方式记录下来。

2、然后我们使用 另一个数组 将当前状态x 的后继状态标记。

3、最后模拟mex运算,也就是我们在标记值中 搜索 未被标记值 的最小值,将其赋值给SG(x)。

4、我们不断的重复 2 - 3 的步骤,就完成了 计算1~n 的函数值。

代码实现如下:

 1 //f[N]:可改变当前状态的方式,N为方式的种类,f[N]要在getSG之前先预处理
 2 //SG[]:0~n的SG函数值
 3 //S[]:为x后继状态的集合
 4 int f[N],SG[MAXN],S[MAXN];
 5 void  getSG(int n){
 6     int i,j;
 7     memset(SG,0,sizeof(SG));
 8     //因为SG[0]始终等于0,所以i从1开始
 9     for(i = 1; i <= n; i++){
10         //每一次都要将上一状态 的 后继集合 重置
11         memset(S,0,sizeof(S));
12         for(j = 0; f[j] <= i && j <= N; j++)
13             S[SG[i-f[j]]] = 1;  //将后继状态的SG函数值进行标记
14         for(j = 0;; j++) if(!S[j]){   //查询当前后继状态SG值中最小的非零值
15             SG[i] = j;
16             break;
17         }
18     }
19 }

现在我们来一个实战演练(题目链接):

       只要按照上面的思路,解决这个就是分分钟的问题。

代码如下:

 1 #include <stdio.h>
 2 #include <string.h>
 3 #define MAXN 1000 + 10
 4 #define N 20
 5 int f[N],SG[MAXN],S[MAXN];
 6 void getSG(int n){
 7     int i,j;
 8     memset(SG,0,sizeof(SG));
 9     for(i = 1; i <= n; i++){
10         memset(S,0,sizeof(S));
11         for(j = 0; f[j] <= i && j <= N; j++)
12             S[SG[i-f[j]]] = 1;
13         for(j = 0;;j++) if(!S[j]){
14             SG[i] = j;
15             break;
16         }
17     }
18 }
19 int main(){
20     int n,m,k;
21     f[0] = f[1] = 1;
22     for(int i = 2; i <= 16; i++)
23         f[i] = f[i-1] + f[i-2];
24     getSG(1000);
25     while(scanf("%d%d%d",&m,&n,&k),m||n||k){
26         if(SG[n]^SG[m]^SG[k]) printf("Fibo\n");
27         else printf("Nacci\n");
28     }
29     return 0;
30 }

大家是不是还没有过瘾,那我就在给大家附上一些组合博弈的题目:

POJ 2234 Matches Game
HOJ 4388 Stone Game II

POJ 2975 Nim
HOJ 1367 A Stone Game
POJ 2505 A multiplication game
ZJU 3057 beans game
POJ 1067 取石子游戏
POJ 2484 A Funny Game
POJ 2425 A Chess Game
POJ 2960 S-Nim
POJ 1704 Georgia and Bob
POJ 1740 A New Stone Game
POJ 2068 Nim
POJ 3480 John
POJ 2348 Euclid's Game
HOJ 2645 WNim
POJ 3710 Christmas Game
POJ 3533 Light Switching Game

目录
相关文章
|
6月前
欧姆定理
欧姆定律(Ohm's Law)是电学中最基本的定律之一,描述了电流、电压和电阻之间的关系。该定律由德国物理学家乔治·西蒙·欧姆于1827年提出,是电学领域的重要基础。
33 0
|
6月前
戴维宁定理
一、戴维宁定理概念 戴维宁定理,也被称为欧拉定理,是图论中的一个重要定理,它描述了在一个连通的无向图中,如果图中除两个节点外,其余节点的度数都是偶数,那么可以从这两个节点出发,经过所有的边,最终回到这两个节点。这个回路被称为欧拉回路。 总之,戴维宁定理是图论中的一个重要定理,它描述了在满足一定条件下,一个连通的无向图可以构成欧拉回路。它在实际问题中有着广泛的应用,同时也带动了对图论的推广和发展。
163 0
|
6月前
代入定理的介绍
代入定理(Substitution Theorem)是数学中的一个重要概念,它在代数、几何和计算机科学等领域都有广泛的应用。本文将介绍代入定理的基本概念、证明方法和应用场景,并通过具体例子来解释其原理和作用。 一、代入定理的基本概念 代入定理是数学中的一个重要定理,它描述了在一个等式或不等式中,如果两个表达式相等或不等,则可以将一个表达式代入另一个表达式中。换句话说,代入定理允许我们在一个等式或不等式中用一个表达式替换另一个表达式,而不改变等式或不等式的真值。 代入定理的基本形式如下: 如果$a=b$,且$P(x)$是一个关于$x$的表达式,则$P(a)$和$P(b)$相等。 这个定理的
135 0
|
6月前
替代定理
替代定理(Superposition theorem)是电路分析中的一个重要原理,它适用于线性电路,描述了当电路中有多个独立电源时,可以通过分别计算每个电源的影响,然后将它们的效应叠加,得到电路中任意元件的电流或电压。
263 0
|
11月前
|
算法
基于matlab的LDPC译码算法误码率对比仿真,对比BP和BF译码
基于matlab的LDPC译码算法误码率对比仿真,对比BP和BF译码
166 0
一文看懂奈奎斯特定理和香农定理
一文看懂奈奎斯特定理和香农定理
131 0
一文看懂奈奎斯特定理和香农定理
三大微分中值定理证明方法(罗尔定理、拉格朗日中值定理、柯西中值定理)
三大微分中值定理证明方法(罗尔定理、拉格朗日中值定理、柯西中值定理)
486 0
三大微分中值定理证明方法(罗尔定理、拉格朗日中值定理、柯西中值定理)
|
机器学习/深度学习
【计算机网络】物理层 : 香农定理 ( 噪声 | 信噪比 | 香农定理 | “香农定理“公式 | “香农定理“ 计算示例 | “奈氏准则“ 与 “香农定理“ 对比 与 计算示例)★
【计算机网络】物理层 : 香农定理 ( 噪声 | 信噪比 | 香农定理 | “香农定理“公式 | “香农定理“ 计算示例 | “奈氏准则“ 与 “香农定理“ 对比 与 计算示例)★
449 0
|
机器学习/深度学习 算法 Python
ML之NN:利用神经网络的BP算法解决XOR类(异或非)问题(BP solve XOR Problem)
ML之NN:利用神经网络的BP算法解决XOR类(异或非)问题(BP solve XOR Problem)
ML之NN:利用神经网络的BP算法解决XOR类(异或非)问题(BP solve XOR Problem)
Julia实现克莱姆法则求解线性方程组
在实际应用中,有时候我们需要求解一组方程。一般来说,基于线性方程组的解空间理论,线性方程组有唯一解当且仅当有效方程数等于未知数的个数。这时,可以运用多种方法来求出唯一的解。而克莱姆法则(Cramer's Rule)就是一种求解线性方程组的方法。利用Julia可以非常方便的求解方程组的解,只需3行代码。
1557 0
Julia实现克莱姆法则求解线性方程组