一文看懂奈奎斯特定理和香农定理

简介: 一文看懂奈奎斯特定理和香农定理

1.故事背景


1.png2.png

2.奈氏准则


3.png4.png

3.香农定理

5.png6.png7.png

4.“NICE”vs “香浓”

8.png

5.参考文献

王道考研/CSKAOYAN.COM,《计算机网络》视频教程,小姐姐讲的真好,比看书好多了。

相关文章
|
机器学习/深度学习 人工智能 算法
Mamba作者新作:将Llama3蒸馏成混合线性 RNN
【9月更文挑战第25天】《Distillation and Acceleration of Hybrid Models》一文由日内瓦大学、Together AI、康奈尔大学和普林斯顿大学的研究者联合发表,提出将大型Transformer模型(如Llama3)蒸馏成混合线性RNN的新方法,旨在提升长序列生成任务的效率。该方法通过权重映射和多阶段蒸馏,结合渐进蒸馏、监督微调及定向偏好优化技术,有效解决了Transformer模型的二次复杂度和高内存需求问题。实验表明,混合模型在聊天基准测试中表现出色,甚至优于原模型,并通过硬件感知解码算法进一步加速推理。然而,该方法在其他任务上的适用性仍有待验证。
207 7
|
网络架构
子网划分中subnet-id可以取全0和全1吗?子网计算实战
子网划分划分中的全0 和全 1在不同模式下处理情况不同。分为 classful 和classless,如果你的路由器工作在classful环境下,全0 和全1网段是不能使用的,而classless的掩码任何时候都和IP地址成对地出现。所以说要看题目给的具体情况,
741 0
|
网络协议 API
计算机网络:传输层——多路复用与解复用
计算机网络:传输层——多路复用与解复用
336 0
|
自然语言处理 物联网
《哇塞!LoRA 竟如魔法般实现大模型 LLM 微调,带你开启自然语言处理的奇幻冒险之旅!》
【8月更文挑战第21天】大语言模型革新了自然语言处理领域,但直接应用往往效果欠佳。LoRA(Low-Rank Adaptation)应运而生,通过低秩矩阵分解减少微调参数量,有效降低成本并避免过拟合。LoRA在每层加入可训练低秩矩阵,捕获特定任务信息而不大幅改动原模型。示例代码展示如何使用LoRA对预训练模型进行文本分类任务的微调,体现其高效灵活的特点。随着大模型的发展,LoRA将在NLP领域扮演关键角色。
282 0
|
11月前
|
关系型数据库 分布式数据库 数据库
PolarDB 以其出色的性能和可扩展性,成为大数据分析的重要工具
在数字化时代,企业面对海量数据的挑战,PolarDB 以其出色的性能和可扩展性,成为大数据分析的重要工具。它不仅支持高速数据读写,还通过数据分区、索引优化等策略提升分析效率,适用于电商、金融等多个行业,助力企业精准决策。
249 4
|
机器学习/深度学习 PyTorch API
ONNX 与实时应用:延迟敏感场景下的部署策略
【8月更文第27天】在实时应用中,如自动驾驶汽车、视频分析系统等,快速响应和高吞吐量是至关重要的。Open Neural Network Exchange (ONNX) 提供了一种标准化的方法来部署机器学习模型,使其能够在不同的硬件和平台上高效运行。本文将探讨如何利用 ONNX 在延迟敏感的应用场景中部署模型,并提供一些策略和示例代码来确保低延迟和高吞吐量。
1195 4
|
11月前
|
机器学习/深度学习 自然语言处理 数据管理
GraphRAG核心组件解析:图结构与检索增强生成
【10月更文挑战第28天】在当今数据科学领域,自然语言处理(NLP)和图数据管理技术的发展日新月异。GraphRAG(Graph Retrieval-Augmented Generation)作为一种结合了图结构和检索增强生成的创新方法,已经在多个应用场景中展现出巨大的潜力。作为一名数据科学家,我对GraphRAG的核心组件进行了深入研究,并在此分享我的理解和实践经验。
479 0
|
Go
go使用snmp库查询mib数据
go使用snmp库查询mib数据
259 0
|
运维 Prometheus 监控
Kubernetes 集群的监控与维护策略
【5月更文挑战第30天】 在微服务架构日益普及的背景下,容器编排工具如Kubernetes成为确保服务高效运行的关键。本文聚焦于Kubernetes集群的监控和维护,首先探讨了监控系统的重要性及其对集群健康的影响,随后详细介绍了一套综合监控策略,包括节点性能监控、应用服务质量跟踪以及日志管理等方面。此外,文章还提出了一系列实用的集群维护技巧和最佳实践,旨在帮助运维人员预防故障发生,快速定位问题,并确保集群长期稳定运行。