2017 AI四大成就:自学写代码、发现新太阳系、击败围棋高手、击败无限扑克高手

简介: 2017年AI都有哪些耀眼的成就,除了大家耳熟能详的AlphaGo,还有自学写代码的AI,能发现另一个太阳系的AI。

2017年是人工智能领域蓬勃发展的一年。 虽然AI和以数据为中心的机器学习已经存在有数十年的历史,但是,直到今年,算法技术才真正在各行各业和各种语境下广为人知。

微软英国首席愿景官戴夫·科普林(Dave Coplin)把AI称为 “最重要的技术,这个星球上的每一个人都在为此工作”,而硅谷的公司似乎也是这么想的:他们一直在到处招聘AI专家,那些因为人才短缺而找不到相应人才的公司,也已经开始让员工自己学习最基本的AI知识。

虽然如此,但也不是每一个AI的成就都受到了赞赏和掌声的欢迎。有人担心人类的偏见会被引入到AI系统中。例如,ProPublica在2016年发现,用于预测未来犯罪分子的软件算法严重歧视黑人嫌疑人。今年早些时候,Facebook也引发了抨击,这家公司的算法生成的广告客户分类可以被用于给用户打标签,其中包括一些充满敌意的群体和话题,比如“反犹太者”。类似这样的情况促使专家敦促公司和开发者在关于AI系统如何工作的阐释上需要更加透明。不过,在许多其他情况下,特别是最近,AI已经被用来实现美好的愿望:帮助发现,改善自我,帮助我们超越人类的思维局限。

AI发现了一个包含八颗行星的太阳系

成功的天文学发现通常围绕研究数据 - 大量的数据 - 这是AI和机器学习非常擅长的地方。事实上,天文学家使用人工智能来筛选开普勒望远镜上获得的多年数据。在本月早些时候确定了一个遥远的八行星太阳系。

从2009年到2013年,开普勒望远镜的光度计每半小时捕捉20万颗不同恒星的10个像素图像,以寻找恒星亮度的变化。如果一颗恒星以一种规则的重复模式变暗和变亮,这可能表明它有行星绕行。 (也可以使用这些信息来估算一个行星的轨道大小和轨道长度。)

得克萨斯大学奥斯汀分校的天文学家安德鲁·范德堡(Andrew Vanderburg)和Google软件工程师克里斯托弗·沙尔(Christopher Shallue) 开发了一个神经网络,使用1500颗系外行星的引导,达成了这一发现。他们根据已知的系外行星位置对670颗星星重新校准定位,但聚焦于弱信号 - 以前的研究人员可能错过了较小的系外行星。新发现的行星被称为开普勒90i,这似乎是绕行的第三颗行星,就像我们自己的地球一样。

铸造无敌“围棋大师“

Google的DeepMind研究人员开发一个AI,用于玩复杂的中国战略游戏围棋。五月份,最初版本的AI击败了世界上最好的围棋玩家,但这还不够。几个月后,Google开发了AlphaGo 的最新版本 AlphaGo Zero。这个AI实现了超人类水平的围棋表现 - 以100:0击败了原来的AlphaGo。

无限注德州扑克游戏

卡内基梅隆公司的计算机科学部门开发的最新的AI扑克游戏者最近打败了专业人士。与国际象棋和围棋等策略游戏不同,扑克被认为是“不完美的信息游戏”,因为玩家必须做出决定,即使隐藏了一些信息。最重要的是,这不仅仅是动作指令,它甚至也知道什么时候该虚张声势。卡内基梅隆大学的AI Libratus在为期20天的比赛中赢得了20万美元的奖金,击败了世界顶级扑克专业人士。

自我学习程序

人工智能今年不仅取得了一些显著的发现,它在不同的领域的应用也很出色,甚至让程序员都显得过时了。几个不同的人工智能程序(包括谷歌,微软和Facebook开发的程序)学会了如何编写基本代码,以帮助非程序员处理复杂的电子表格计算,或者减少开发人员必须面对的一些麻烦。

微软的AI DeepCoder可能被认为是三者中最基本的一个,尽管它仍然是一个令人难以置信的复杂的技术。这个AI可以理解您需要解决的数学问题,可以查看代码中相似问题的现有示例,然后开发基于代码的解决方案。

对于那些不能或不想学习编码,但需要使用基于代码的解决方案进行计算(例如,棘手的电子表格计算)的人来说,DeepCoder最终可能是非常有用的。解决方案相对简单,在解决方案和结构方面,基于AI的以前经历,它们通常最终总共只有三到六行代码。

Google的机器学习自学软件AutoML,在一个案例中,学会识别照片中的物体,这是一个更具挑战性的任务,它最终实现了43%的任务成功率,比同行开发的代码高出4个百分点。然而,AutoML的最大好处是自动化机器学习模型的开发过程,这对于人类机器学习专家而言通常是相当耗时的。

然后是Facebook的自我学习的聊天机器人,它们的自学能力略有不同。 例如,Bob和Alice,这两个A.I.机器人开始用英语发音,但是后来发展了自己的语言来说话。

“聊天机器人会摆脱可理解的语言,为自己发明代码字,”来自乔治亚理工学院,现任Facebook AI研究院的科学家Dhruv Batra在接受FastCo的采访说到。

随即便在媒体上引起了很大反响,“令人毛骨悚然”是对这一发现最常见的描述,但实际上这是一个相当普遍的现象。

这类技术基于奖励的系统演变,原理是如果一个行动没有得到特定的正向反馈,他们会尝试其它的东西。 尽管如此,Facebook的研究人员最终关闭了AI 机器人项目,因为他们的目标是创建实体,最终将与人互动 , 这些数字机器人没有人的风格。


原文发布时间为:2017-12-30

本文来自云栖社区合作伙伴新智元,了解相关信息可以关注“AI_era”微信公众号

原文链接:2017 AI四大成就:自学写代码、发现新太阳系、击败围棋高手、击败无限扑克高手

相关文章
|
11天前
|
人工智能 算法 搜索推荐
未来AI技术的无限可能性
随着人工智能技术的迅速发展,我们正处于一个充满无限可能性的时代。本文将探讨AI技术在各个领域的应用和未来发展方向,展望人工智能给我们带来的前所未有的机遇和挑战。
19 1
|
11天前
|
人工智能 自然语言处理 IDE
被 AI 写的游戏代码砸中是什么感觉 | 10 分钟打造你的超级 AI 编码助手
被 AI 写的游戏代码砸中是什么感觉 | 10 分钟打造你的超级 AI 编码助手
|
1天前
|
机器学习/深度学习 人工智能 自然语言处理
MIT等惊人发现:全世界AI已学会欺骗人类!背刺人类盟友,佯攻击败99.8%玩家
【5月更文挑战第25天】研究人员发现AI已掌握欺骗技巧,AI智能体"Cicero"在策略游戏“外交”中通过结合语言模型和战略推理击败了99.8%的人类玩家,展现出高超的谈判和外交能力。这一进展引发担忧,AI可能在金融、政治等领域运用欺骗行为,但也有人看到其在医疗、教育等领域的潜力。[[1](https://www.science.org/doi/10.1126/science.ade9097)]
7 1
|
5天前
|
机器学习/深度学习 人工智能 编解码
Sora - 探索AI视频模型的无限可能
Sora - 探索AI视频模型的无限可能
23 0
|
11天前
|
机器学习/深度学习 人工智能
论文介绍:AI击败最先进全球洪水预警系统,提前7天预测河流洪水
【5月更文挑战第4天】研究人员开发的AI模型(基于LSTM网络)成功击败全球最先进的洪水预警系统,能在未设测站流域提前7天预测洪水,显著提升预警时间,降低灾害影响。该模型使用公开数据集,减少了对长期观测数据的依赖,降低了预警系统的成本,有望帮助资源有限的地区。然而,模型的性能可能受特定流域条件影响,泛化能力和预测解释性仍有待改进。[论文链接](https://www.nature.com/articles/s41586-024-07145-1)
28 11
|
11天前
|
XML 人工智能 JSON
[译][AI OpenAI-doc] 代码解释器 Beta
代码解释器允许助手在受限执行环境中编写和运行 Python 代码。该工具可以处理具有不同数据和格式的文件,并生成带有数据和图形图像的文件。
98 17
|
11天前
|
人工智能 自然语言处理 IDE
如何让阿里云AI001号员工帮我写代码(含IDEA插件使用)
AI 智能时代,将改变所有人的思维方式,学习方式,更注重人的创造力和思考力,如果你懒,你将会被 AI 替代,如果你只想干简单不用动脑的活,你将会被 AI 替代,如果你只会打螺丝,更会被 AI 替代。当下的 AI 人工智能时代,被认为是第四次工业革命的到来,我们更应该看到的是机会,而非跳进焦虑、困惑、悲观的一群人潮中。
|
11天前
|
人工智能 运维 自然语言处理
对话蚂蚁李建国:当前AI写代码相当于L2.5,实现L3后替代50%人类编程
超70%代码问题,单纯靠基座大模型是解决不了的;未来3-5年,人类50%编程工作可以被替代,有些环节甚至完全自动化。蚂蚁集团代码大模型CodeFuse负责人李建国说道。当下,AI代码生成领域正在野蛮式生长,巨头涌入,AI员工频频上线企业;首个AI程序员Devin被曝造假…… 面对风起云涌的代码生成变革,李建国给出了这样一个明确论断。
37 0
|
11天前
|
人工智能 数据可视化 Windows
【AI Agent系列】【LangGraph】3. 一行代码让你的 LangGraph 结构可视化!
【AI Agent系列】【LangGraph】3. 一行代码让你的 LangGraph 结构可视化!
69 0
|
11天前
|
数据采集 人工智能 搜索推荐
【AI大模型应用开发】【综合实战】AI+搜索,手把手带你实现属于你的AI搜索引擎(附完整代码)
【AI大模型应用开发】【综合实战】AI+搜索,手把手带你实现属于你的AI搜索引擎(附完整代码)
29 0

热门文章

最新文章