使用Raccoon AI写代码,同事又来围观

简介: 使用Raccoon AI写代码,同事又来围观

公司里有一些开发的同事老是吐槽工作忙,天天加班,我想很大可能是没利用好轮子和AI工具,总是自己瞎写耽误时间。

不知道大家发现没有,其实软件开发过程中很多都是引用轮子和组件,如果你非常熟悉Github上的开源代码,它们可能会覆盖你80%以上的开发工作,也就是说你无需自己写很多代码,只要会装轮子,也能出色地完成工作。 不光是软件开发,网站开发、机器学习、数据科学、网络爬虫等各种编程场景都是如此,你需要写的代码并不多,前人早已经帮你写好了,而且写的可能比你出色很多。

由于生成式AI的出现,编程成为最大的受益者之一,类似于Github copilot这类AI编程模型就可以帮你找轮子,自动完成代码的编写,你能获取代码建议,构建、调试和测试应用程序,编程效率会指数级的提升。

最近看到国内有一款类似的产品-代码小浣熊Raccoon,它是商汤开发的AI编程工具,你可以在VSCode上安装其插件,和其他VScode插件一样,用起来很方便。 6ffd6184cb551d2ed4eeb059ce8ecce6.png 用了几周下来,我觉得Raccoon主要有两大核心功能,首先是代码补全这种主流的AI辅助编程功能,当你在编写Python或其它代码时,Raccoon会自动提示代码补全,省得你再手动写一大串代码。

比如我想使用Python sklearn库写一个线性回归预测模型,Raccoon能直接根据已有代码补全模型代码。 533c48c3bb207df7362098144b78c33f.png

其次是对话自动生成代码功能,你直接提问"Python如何生成Excel文件"等问题,它会给出代码建议,就像在ChatGPT聊天问答一样。

这种功能非常实用,可能你只知道自己想要什么,完全不懂怎么代码实现,Raccoon的代码问答功能就能直接根据你的描述来生成建议和代码。

e172b035fbca96cc408043c035f5ef21.png

其他Raccoon能实现的功能还有代码纠错(纠正语法错误),代码翻译(比如把Python代码翻译为JS)、代码解释(解释代码是干嘛的)、代码重构(调整代码结构)等等,总得来说Raccoon在AI编程上是功能比较完善的。

Raccoon可不仅仅支持Python,它还支持Java、JS、C++、SQL等几十种编程语言,基本做到了主流语言全覆盖。

而且你不光可以在VSCode上使用Raccoon,像IntelliJ IDEA、Jetbrains Pycharm等各种主流的IDE编辑器也都支持Raccoon。

我觉得Raccoon等AI编程工具的出现会极大地改变现在的开发方式,超过80%的代码工作都可以交给AI,程序员以后可能更多的是思考怎么进行优化创新,以及如何利用好AI。

在vscode上使用代码小浣熊Raccoon

可能有不少人还不知道如何使用VsCode的插件功能,这里简单介绍下如何在VsCode上安装和使用Raccoon,大致分为三个步骤:

1、安装Raccoon插件

你可以在VsCode插件库搜索“Raccoon”,会出来Raccoon插件,点击安装即可,安装好后会出现Raccoon的介绍和使用说明,可以大致看下。

0c66a87b141fe70097707ece0486ea5f.png

安装好后,会在Vscode侧栏出现Raccoon的图标,也就是它的功能区。 95cd35d5a29e4ef257398ea2461eaa30.png

2、注册登录Raccoon Raccoon需要登录才能使用,你需要免费注册个Raccoon账号,然后登录就能在Vscode上使用Raccoon了。

c3ede3d8cacdd7f38c1b32a609807bec.png

3、在代码区使用Raccoon

以代码补全为例,你可以先在VsCode上建个Py文件,然后写Python代码,按下热键 Alt + /,Raccoon就会为你提供代码建议。

f5b84d803868433b6541e08b0edc571c.png

如下是在python连接oracle数据时,Raccoon补全的代码

52952c3903122997716af705a7a723df.png

接下来,我们使用Python sklearn库在Raccoon的帮助下来实现景区客流预测,完整代码如下:

import numpy as np  
import pandas as pd  
from sklearn.model_selection import train_test_split  
from sklearn.tsa import ARIMA  
from sklearn.metrics import mean_squared_error  
  
# 生成模拟数据  
np.random.seed(0)  
days = pd.date_range(start='1/1/2020', periods=365, freq='D')  
series = np.random.randn(len(days)).cumsum() + 20  
series = series + np.random.randn(len(days)) * 10  # 添加一些噪声  
series = series.reindex(days)  
series = series.interpolate()  # 填充缺失值  
  
# 转换数据为适合的时间序列格式  
data = pd.DataFrame({'visitors': series})  
data['date'] = data['date'].apply(lambda x: x.strftime('%Y-%m-%d'))  
data = data.set_index('date')  
  
# 分割数据为训练集和测试集  
train, test = train_test_split(data['visitors'], test_size=100)  
train = train.dropna()  
test = test.dropna()  
  
# 使用ARIMA模型进行预测  
model = ARIMA(train, order=(5,1,0))  # 选择ARIMA模型的参数  
model_fit = model.fit(disp=0)  
  
# 预测未来一个月的客流  
forecasted_data = model_fit.forecast(steps=30)  # steps=30预测未来30天的数据  
mse = mean_squared_error(test[-30:], forecasted_data[0])  # 计算预测误差  
print(f"Mean Squared Error: {mse}")

以下是Raccoon在进行时间序列建模过程提供的代码,能准确的提供模型训练、误差检测等建议。 053d48baf9b6c0d063ee56e557576cec.png

8a3a927ae8800e1d4018cfa981bb8d15.png 998f236dafa289ea61e65120a4c264ec.png

你也可以直接向Raccoon进行提问:生成一段Python,使用sklearn实现未来一个月的景区客流预测,请自己生成数据。

连续按两次Ctrl键,即可唤醒侧边栏的代码助手,输入prompt即可

12facea39c894d50711aaa76217d3e05.png

显示结果如下 29fc975400629398d157b1731adb36ef.png

Raccoon会根据你的需求生成一段完整Python sklearn客流预测代码,你只需要稍作修改便可以作为自己的项目代码。

代码小浣熊Raccoon功能清单

前面演示了如何在Raccoon上进行代码补全和对话生成代码,以下列举下Raccoon各项功能的使用场景和特点,方便对号入坐去使用。

(1)代码补全功能 热键 Alt + /激活,使用场景非常多,适用代码初学者和开发老鸟,能极大提升编程效率

(2)对话自动生成代码 连续按两次Ctrl键激活,通过对话方式生成代码和建议,媲美ChatGPT代码功能

(3)代码解释和纠错 复制代码后激活(需选择修正),能纠正代码语法错误及不规范情况,使用非常方便

7bbfc5af0d8f4c051cc9dee7e89edbe3.png

(4)代码翻译 复制代码后激活(需选择翻译),如果你使用多种编程语言,该功能会非常实用,直接在多语言间进行代码转换。

b330f0fe48924a8415eb89f1b0c89b9c.png

(4)编程学习 一般初学编程常常因为不会搜索,在某一个语法或功能上纠结很久,Raccoon的对话功能可以快速帮你解决问题,所以初学者可以把它当作一个编程学习工具,相当的实用。

总结

在AI快速发展的今天,AI辅助编程或者自主编程必然会成为大势所趋,像Raccoon这样的AI编程工具已经可以解决大部分编程问题,我们应该好好利用,积极拥抱。

目录
相关文章
|
5月前
|
数据采集 人工智能 监控
零代码改造!LoongSuite AI 采集套件观测实战
在 AI 时代,随着模型和应用侧的快速演化,对于推理过程,成本和性能显得尤为重要,而端到端的 AI 可观测是其中至关重要的一环。本文将介绍端到端 AI 可观测的基本概念与痛点,并通过阿里云可观测团队最新开源的 AI 采集套件 LoongSuite Agent 来对大模型应用进行全链路可观测以解决这些痛点。帮助客户无侵入,低成本地进行全链路的大模型可观测。
558 59
零代码改造!LoongSuite AI 采集套件观测实战
|
5月前
|
人工智能 自然语言处理 IDE
模型微调不再被代码难住!PAI和Qwen3-Coder加速AI开发新体验
通义千问 AI 编程大模型 Qwen3-Coder 正式开源,阿里云人工智能平台 PAI 支持云上一键部署 Qwen3-Coder 模型,并可在交互式建模环境中使用 Qwen3-Coder 模型。
1038 109
|
4月前
|
人工智能 IDE Java
AI Coding实践:CodeFuse + prompt 从系分到代码
在蚂蚁国际信贷业务系统建设过程中,技术团队始终面临双重考验:一方面需应对日益加速的需求迭代周期,满足严苛的代码质量规范与金融安全合规要求;另一方面,跨地域研发团队的协同效率与代码标准统一性,在传统开发模式下逐渐显现瓶颈。为突破效率制约、提升交付质量,我们积极探索人工智能辅助代码生成技术(AI Coding)的应用实践。本文基于蚂蚁国际信贷技术团队近期的实际项目经验,梳理AI辅助开发在金融级系统快速迭代场景中的实施要点并分享阶段性实践心得。
1018 25
AI Coding实践:CodeFuse + prompt 从系分到代码
|
4月前
|
人工智能 自然语言处理 安全
氛围编程陷阱:为什么AI生成代码正在制造大量"伪开发者"
AI兴起催生“氛围编程”——用自然语言生成代码,看似高效实则陷阱。它让人跳过编程基本功,沦为只会提示、不懂原理的“中间商”。真实案例显示,此类项目易崩溃、难维护,安全漏洞频出。AI是技能倍增器,非替代品;真正强大的开发者,永远是那些基础扎实、能独立解决问题的人。
431 11
氛围编程陷阱:为什么AI生成代码正在制造大量"伪开发者"
|
4月前
|
人工智能 机器人 测试技术
AI写的代码为何金玉其外败絮其中
本文分析AI编码看着好看其实很烂的现象、原因,探索行之有效的的解决方案。并从理论上延伸到如何更好的与AI协作的方式上。
194 3
|
5月前
|
人工智能 测试技术 开发工具
如何将 AI 代码采纳率从30%提升到80%?
AI编码采纳率低的根本原因在于人类期望其独立完成模糊需求,本文提出了解决之道,讲解如何通过结构化文档和任务拆解提高AI的基础可靠性。
1398 24
|
5月前
|
人工智能 数据可视化 定位技术
不会编程也能体验的 AI 魔法,外滩大会代码原生地等你解锁
不会编程也能体验的 AI 魔法,外滩大会代码原生地等你解锁
496 39
|
5月前
|
数据采集 人工智能 监控
零代码改造!LoongSuite AI 采集套件观测实战
本文介绍了AI应用生态的快速发展及可观测性的重要性,重点阐述了LLM(大语言模型)应用的复杂性对全链路监控的需求。LoongSuite作为开源的可观测性数据采集套件,提供无侵入式埋点、全栈观测与多语言支持,助力AI应用实现从端侧到模型层的端到端链路追踪,提升系统稳定性与运维效率。
339 1
|
4月前
|
人工智能 监控 Java
零代码改造 + 全链路追踪!Spring AI 最新可观测性详细解读
Spring AI Alibaba 通过集成 OpenTelemetry 实现可观测性,支持框架原生和无侵入探针两种方式。原生方案依赖 Micrometer 自动埋点,适用于快速接入;无侵入探针基于 LoongSuite 商业版,无需修改代码即可采集标准 OTLP 数据,解决了原生方案扩展性差、调用链易断链等问题。未来将开源无侵入探针方案,整合至 AgentScope Studio,并进一步增强多 Agent 场景下的观测能力。
2198 68
|
4月前
|
人工智能 安全 开发工具
C3仓库AI代码门禁通用实践:基于Qwen3-Coder+RAG的代码评审
本文介绍基于Qwen3-Coder、RAG与Iflow在C3级代码仓库落地LLM代码评审的实践,实现AI辅助人工评审。通过CI流水线自动触发,结合私域知识库与生产代码同仓管理,已成功拦截数十次高危缺陷,显著提升评审效率与质量,具备向各类代码门禁平台复用推广的价值。(239字)
953 24

热门文章

最新文章