[Hadoop大数据]——Hive数据的导入导出

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介:

Hive作为大数据环境下的数据仓库工具,支持基于hadoop以sql的方式执行mapreduce的任务,非常适合对大量的数据进行全量的查询分析。

本文主要讲述下hive载cli中如何导入导出数据:

导入数据

第一种方式,直接从本地文件系统导入数据

我的本机有一个test1.txt文件,这个文件中有三列数据,并且每列都是以'\t'为分隔

[root@localhost conf]# cat /usr/tmp/test1.txt
1   a1  b1
2   a2  b2
3   a3  b3
4   a4  b

创建数据表:

>create table test1(a string,b string,c string)
>row format delimited
>fields terminated by '\t'
>stored as textfile;

导入数据:

load data local inpath '/usr/tmp/test1.txt' overwrite into table test1;

其中local inpath,表明路径为本机路径
overwrite表示加载的数据会覆盖原来的内容

第二种,从hdfs文件中导入数据

首先上传数据到hdfs中

hadoop fs -put /usr/tmp/test1.txt /test1.txt

在hive中查看test1.txt文件

hive> dfs -cat /test1.txt;
1   a1  b1
2   a2  b2
3   a3  b3
4   a4  b4

创建数据表,与前面一样。导入数据的命令有些差异:

load data inpath '/test1.txt' overwrite into table test2;

第三种,基于查询insert into导入

首先定义数据表,这里直接创建带有分区的表

hive> create table test3(a string,b string,c string) partitioned by (d string) row format delimited fields terminated by '\t' stored as textfile;
OK
Time taken: 0.109 seconds
hive> describe test3;
OK
a                       string                                      
b                       string                                      
c                       string                                      
d                       string                                      
         
# Partition Information      
# col_name              data_type               comment             
         
d                       string                                      
Time taken: 0.071 seconds, Fetched: 9 row(s)

通过查询直接导入数据到固定的分区表中:

hive> insert into table test3 partition(d='aaaaaa') select * from test2;
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
Query ID = root_20160823212718_9cfdbea4-42fa-4267-ac46-9ac2c357f944
Total jobs = 3
Launching Job 1 out of 3
Number of reduce tasks is set to 0 since there's no reduce operator
Job running in-process (local Hadoop)
2016-08-23 21:27:21,621 Stage-1 map = 100%,  reduce = 0%
Ended Job = job_local1550375778_0001
Stage-4 is selected by condition resolver.
Stage-3 is filtered out by condition resolver.
Stage-5 is filtered out by condition resolver.
Moving data to directory hdfs://localhost:8020/user/hive/warehouse/test.db/test3/d=aaaaaa/.hive-staging_hive_2016-08-23_21-27-18_739_4058721562930266873-1/-ext-10000
Loading data to table test.test3 partition (d=aaaaaa)
MapReduce Jobs Launched: 
Stage-Stage-1:  HDFS Read: 248 HDFS Write: 175 SUCCESS
Total MapReduce CPU Time Spent: 0 msec
OK
Time taken: 3.647 seconds

通过查询观察结果

hive> select * from test3;
OK
1   a1  b1  aaaaaa
2   a2  b2  aaaaaa
3   a3  b3  aaaaaa
4   a4  b4  aaaaaa
Time taken: 0.264 seconds, Fetched: 4 row(s)

PS:也可以直接通过动态分区插入数据:

insert into table test4 partition(c) select * from test2;

分区会以文件夹命名的方式存储:

hive> dfs -ls /user/hive/warehouse/test.db/test4/;
Found 4 items
drwxr-xr-x   - root supergroup          0 2016-08-23 21:33 /user/hive/warehouse/test.db/test4/c=b1
drwxr-xr-x   - root supergroup          0 2016-08-23 21:33 /user/hive/warehouse/test.db/test4/c=b2
drwxr-xr-x   - root supergroup          0 2016-08-23 21:33 /user/hive/warehouse/test.db/test4/c=b3
drwxr-xr-x   - root supergroup          0 2016-08-23 21:33 /user/hive/warehouse/test.db/test4/c=b4

第四种,直接基于查询创建数据表

直接通过查询创建数据表:

hive> create table test5 as select * from test4;
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
Query ID = root_20160823213944_03672168-bc56-43d7-aefb-cac03a6558bf
Total jobs = 3
Launching Job 1 out of 3
Number of reduce tasks is set to 0 since there's no reduce operator
Job running in-process (local Hadoop)
2016-08-23 21:39:46,030 Stage-1 map = 100%,  reduce = 0%
Ended Job = job_local855333165_0003
Stage-4 is selected by condition resolver.
Stage-3 is filtered out by condition resolver.
Stage-5 is filtered out by condition resolver.
Moving data to directory hdfs://localhost:8020/user/hive/warehouse/test.db/.hive-staging_hive_2016-08-23_21-39-44_259_5484795730585321098-1/-ext-10002
Moving data to directory hdfs://localhost:8020/user/hive/warehouse/test.db/test5
MapReduce Jobs Launched: 
Stage-Stage-1:  HDFS Read: 600 HDFS Write: 466 SUCCESS
Total MapReduce CPU Time Spent: 0 msec
OK
Time taken: 2.184 seconds

查看结果

hive> select * from test5;
OK
1   a1  b1
2   a2  b2
3   a3  b3
4   a4  b4
Time taken: 0.147 seconds, Fetched: 4 row(s)

导出数据

导出到本地文件

执行导出本地文件命令:

hive> insert overwrite local directory '/usr/tmp/export' select * from test1;
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
Query ID = root_20160823221655_05b05863-6273-4bdd-aad2-e80d4982425d
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there's no reduce operator
Job running in-process (local Hadoop)
2016-08-23 22:16:57,028 Stage-1 map = 100%,  reduce = 0%
Ended Job = job_local8632460_0005
Moving data to local directory /usr/tmp/export
MapReduce Jobs Launched: 
Stage-Stage-1:  HDFS Read: 794 HDFS Write: 498 SUCCESS
Total MapReduce CPU Time Spent: 0 msec
OK
Time taken: 1.569 seconds
hive> 

在本地文件查看内容:

[root@localhost export]# ll
total 4
-rw-r--r--. 1 root root 32 Aug 23 22:16 000000_0
[root@localhost export]# cat 000000_0 
1a1b1
2a2b2
3a3b3
4a4b4
[root@localhost export]# pwd
/usr/tmp/export
[root@localhost export]# 

导出到hdfs

hive> insert overwrite directory '/usr/tmp/test' select * from test1;
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
Query ID = root_20160823214217_e8c71bb9-a147-4518-8353-81f9adc54183
Total jobs = 3
Launching Job 1 out of 3
Number of reduce tasks is set to 0 since there's no reduce operator
Job running in-process (local Hadoop)
2016-08-23 21:42:19,257 Stage-1 map = 100%,  reduce = 0%
Ended Job = job_local628523792_0004
Stage-3 is selected by condition resolver.
Stage-2 is filtered out by condition resolver.
Stage-4 is filtered out by condition resolver.
Moving data to directory hdfs://localhost:8020/usr/tmp/test/.hive-staging_hive_2016-08-23_21-42-17_778_6818164305996247644-1/-ext-10000
Moving data to directory /usr/tmp/test
MapReduce Jobs Launched: 
Stage-Stage-1:  HDFS Read: 730 HDFS Write: 498 SUCCESS
Total MapReduce CPU Time Spent: 0 msec
OK
Time taken: 1.594 seconds

导出成功,查看导出的hdfs文件

hive> dfs -cat /usr/tmp/test;
cat: `/usr/tmp/test': Is a directory
Command failed with exit code = 1
Query returned non-zero code: 1, cause: null
hive> dfs -ls /usr/tmp/test;
Found 1 items
-rwxr-xr-x   3 root supergroup         32 2016-08-23 21:42 /usr/tmp/test/000000_0


hive> dfs -cat /usr/tmp/test/000000_0;
1a1b1
2a2b2
3a3b3
4a4b4
hive> 

导出到另一个表

样例可以参考前面数据导入的部分:

insert into table test3 select * from test1;
本文转自博客园xingoo的博客,原文链接:[Hadoop大数据]——Hive数据的导入导出,如需转载请自行联系原博主。
相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
2月前
|
存储 分布式计算 数据挖掘
数据架构 ODPS 是什么?
数据架构 ODPS 是什么?
516 7
|
2月前
|
存储 分布式计算 大数据
大数据 优化数据读取
【11月更文挑战第4天】
65 2
|
9天前
|
分布式计算 Shell MaxCompute
odps测试表及大量数据构建测试
odps测试表及大量数据构建测试
|
24天前
|
存储 分布式计算 大数据
Flume+Hadoop:打造你的大数据处理流水线
本文介绍了如何使用Apache Flume采集日志数据并上传至Hadoop分布式文件系统(HDFS)。Flume是一个高可用、可靠的分布式系统,适用于大规模日志数据的采集和传输。文章详细描述了Flume的安装、配置及启动过程,并通过具体示例展示了如何将本地日志数据实时传输到HDFS中。同时,还提供了验证步骤,确保数据成功上传。最后,补充说明了使用文件模式作为channel以避免数据丢失的方法。
60 4
|
1月前
|
数据采集 分布式计算 Hadoop
使用Hadoop MapReduce进行大规模数据爬取
使用Hadoop MapReduce进行大规模数据爬取
|
2月前
|
机器学习/深度学习 存储 大数据
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系,保留最大方差信息,实现数据压缩、去噪及可视化。本文详解PCA原理、步骤及其Python实现,探讨其在图像压缩、特征提取等领域的应用,并指出使用时的注意事项,旨在帮助读者掌握这一强大工具。
115 4
|
2月前
|
存储 大数据 数据管理
大数据分区简化数据维护
大数据分区简化数据维护
31 4
|
2月前
|
存储 大数据 定位技术
大数据 数据索引技术
【10月更文挑战第26天】
72 3
|
2月前
|
存储 大数据 OLAP
大数据数据分区技术
【10月更文挑战第26天】
96 2
|
2月前
|
消息中间件 分布式计算 大数据
数据为王:大数据处理与分析技术在企业决策中的力量
【10月更文挑战第29天】在信息爆炸的时代,大数据处理与分析技术为企业提供了前所未有的洞察力和决策支持。本文探讨了大数据技术在企业决策中的重要性和实际应用,包括数据的力量、实时分析、数据驱动的决策以及数据安全与隐私保护。通过这些技术,企业能够从海量数据中提取有价值的信息,预测市场趋势,优化业务流程,从而在竞争中占据优势。
185 2