Python实现八大排序算法(转载)+ 桶排序(原创)

简介: 插入排序核心思想代码实现希尔排序核心思想代码实现冒泡排序核心思想代码实现快速排序核心思想代码实现直接选择排序核心思想代码实现堆排序核心思想代码实现归并排序核心思想代码实现基数排序核心思想代码实现桶排序核心思想代码实现测试结果总结排序算法,重要性不言而喻。

排序算法,重要性不言而喻。现摘录一篇,转载至此,以供学习鉴赏。


插入排序

核心思想

插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的、个数加一的有序数据,算法适用于少量数据的排序,时间复杂度为 O(n^2)。是稳定的排序方法。插入算法把要排序的数组分成两部分:第一部分包含了这个数组的所有元素,但将最后一个元素除外(让数组多一个空间才有插 入的位置),而第二部分就只包含这一个元素(即待插入元素)。在第一部分排序完成后,再将这个最后元素插入到已排好序的第一部分中。

代码实现

def insert_sort(lists): 
    # 插入排序 
    count = len(lists) 
    for i in range(1, count): 
        key = lists[i] 
        j = i - 1 
        while j >= 0: 
            if lists[j] > key: 
                lists[j + 1] = lists[j] 
                lists[j] = key 
            j -= 1 
    return lists

希尔排序

核心思想

希尔排序(Shell Sort)是插入排序的一种。也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。该方法因DL.Shell于 1959年提出而得名。 希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分 成一组,算法便终止。

代码实现

def shell_sort(lists): 
    # 希尔排序 
    count = len(lists) 
    step = 2 
    group = count / step 
    while group > 0: 
        for i in range(0, group): 
            j = i + group 
            while j < count: 
                k = j - group 
                key = lists[j] 
                while k >= 0: 
                    if lists[k] > key: 
                        lists[k + group] = lists[k] 
                        lists[k] = key 
                    k -= group 
                j += group 
        group /= step 
    return lists

冒泡排序

核心思想

它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。

代码实现

def bubble_sort(lists): 
    # 冒泡排序 
    count = len(lists) 
    for i in range(0, count): 
        for j in range(i + 1, count): 
            if lists[i] > lists[j]: 
                lists[i], lists[j] = lists[j], lists[i] 
    return lists

快速排序

核心思想

通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

代码实现

def quick_sort(lists, left, right): 
    # 快速排序 
    if left >= right: 
        return lists 
    key = lists[left] 
    low = left 
    high = right 
    while left < right: 
        while left < right and lists[right] >= key: 
            right -= 1 
        lists[left] = lists[right] 
        while left < right and lists[left] <= key: 
            left += 1 
        lists[right] = lists[left] 
    lists[right] = key 
    quick_sort(lists, low, left - 1) 
    quick_sort(lists, left + 1, high) 
    return lists

直接选择排序

核心思想

基本思想:第1趟,在待排序记录r1 ~ r[n]中选出最小的记录,将它与r1交换;第2趟,在待排序记录r2 ~ r[n]中选出最小的记录,将它与r2交换;以此类推,第i趟在待排序记录r[i] ~ r[n]中选出最小的记录,将它与r[i]交换,使有序序列不断增长直到全部排序完毕。

代码实现

def select_sort(lists): 
    # 选择排序 
    count = len(lists) 
    for i in range(0, count): 
        min = i 
        for j in range(i + 1, count): 
            if lists[min] > lists[j]: 
                min = j 
        lists[min], lists[i] = lists[i], lists[min] 
    return lists

堆排序

核心思想

堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。可以利用数组的特点快速定位指定索引的元 素。堆分为大根堆和小根堆,是完全二叉树。大根堆的要求是每个节点的值都不大于其父节点的值,即A[PARENT[i]] >= A[i]。在数组的非降序排序中,需要使用的就是大根堆,因为根据大根堆的要求可知,最大的值一定在堆顶。

代码实现

# 调整堆 
def adjust_heap(lists, i, size): 
    lchild = 2 * i + 1 
    rchild = 2 * i + 2 
    max = i 
    if i < size / 2: 
        if lchild < size and lists[lchild] > lists[max]: 
            max = lchild 
        if rchild < size and lists[rchild] > lists[max]: 
            max = rchild 
        if max != i: 
            lists[max], lists[i] = lists[i], lists[max] 
            adjust_heap(lists, max, size) 

# 创建堆 
def build_heap(lists, size): 
    for i in range(0, (size/2))[::-1]: 
        adjust_heap(lists, i, size) 

# 堆排序 
def heap_sort(lists): 
    size = len(lists) 
    build_heap(lists, size) 
    for i in range(0, size)[::-1]: 
        lists[0], lists[i] = lists[i], lists[0] 
        adjust_heap(lists, 0, i)

归并排序

核心思想

归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一 个有序表,称为二路归并。

归并过程为:比较a[i]和a[j]的大小,若a[i]≤a[j],则将第一个有序表中的元素a[i]复制到r[k]中,并令i和k分别加上1;否 则将第二个有序表中的元素a[j]复制到r[k]中,并令j和k分别加上1,如此循环下去,直到其中一个有序表取完,然后再将另一个有序表中剩余的元素复 制到r中从下标k到下标t的单元。归并排序的算法我们通常用递归实现,先把待排序区间[s,t]以中点二分,接着把左边子区间排序,再把右边子区间排序, 最后把左区间和右区间用一次归并操作合并成有序的区间[s,t]。

代码实现

def merge(left, right): 
    i, j = 0, 0 
    result = [] 
    while i < len(left) and j < len(right): 
        if left[i] <= right[j]: 
            result.append(left[i]) 
            i += 1 
        else: 
            result.append(right[j]) 
            j += 1 
    result += left[i:] 
    result += right[j:] 
    return result 

def merge_sort(lists): 
    # 归并排序 
    if len(lists) <= 1: 
        return lists 
    num = len(lists) / 2 
    left = merge_sort(lists[:num]) 
    right = merge_sort(lists[num:]) 
    return merge(left, right)

基数排序

核心思想

基数排序(radix sort)属于“分配式排序”(distribution sort),又称“桶子法”(bucket sort)或bin sort,顾名思义,它是透过键值的部份资讯,将要排序的元素分配至某些“桶”中,藉以达到排序的作用,基数排序法是属于稳定性的排序,其时间复杂度为O (nlog(r)m),其中r为所采取的基数,而m为堆数,在某些时候,基数排序法的效率高于其它的稳定性排序法。

代码实现

import math 
def radix_sort(lists, radix=10): 
    k = int(math.ceil(math.log(max(lists), radix))) 
    bucket = [[] for i in range(radix)] 
    for i in range(1, k+1): 
        for j in lists: 
            bucket[j/(radix**(i-1)) % (radix**i)].append(j) 
        del lists[:] 
        for z in bucket: 
            lists += z 
            del z[:] 
    return lists

以上便是转载别人的常用的排序算法,当然了关于排序算法的实现还有很多,这里我在写一个关于“桶排序”的小例子吧。

桶排序

核心思想

为了节省空间和时间,我们需要指定要排序的数据中最小以及最大的数字的值,来方便桶排序算法的运算。

代码实现

# coding:utf-8
import sys

reload(sys)
sys.setdefaultencoding('utf8')
#    __author__ = '郭 璞'
#    __date__ = '2016/9/6'
#    __Desc__ = 桶排序算法,代码实现

def sort(arr):
    result = []
    for index in range(0,len(arr)):
        result.append(0)
    for index in range(len(arr)):
        counter = result[arr[index]]+1
        result[arr[index]]=counter
    return result

if __name__ == '__main__':
    arr = [1,3,5,7,9,2,9,4,6,8,0,1,1,3,2,2,2,2]
    arr = sort(arr)
    for item in range(len(arr)):
        if arr[item]!=0:
            step = arr[item]
            while step>0:
                print item,
                step-=1

测试结果

D:\Software\Python2\python.exe E:/Code/Python/DataStructor/temp/BarrelSort.py
0 1 1 1 2 2 2 2 2 3 3 4 5 6 7 8 9 9

Process finished with exit code 0

总结

以上共介绍了大牛完成的经典的八大排序算法,以及自己实现的一个简单的关于桶排序的小案例。

目录
相关文章
|
24天前
|
算法 前端开发 数据处理
小白学python-深入解析一位字符判定算法
小白学python-深入解析一位字符判定算法
45 0
|
27天前
|
机器学习/深度学习 算法 搜索推荐
从理论到实践,Python算法复杂度分析一站式教程,助你轻松驾驭大数据挑战!
【10月更文挑战第4天】在大数据时代,算法效率至关重要。本文从理论入手,介绍时间复杂度和空间复杂度两个核心概念,并通过冒泡排序和快速排序的Python实现详细分析其复杂度。冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1);快速排序平均时间复杂度为O(n log n),空间复杂度为O(log n)。文章还介绍了算法选择、分而治之及空间换时间等优化策略,帮助你在大数据挑战中游刃有余。
52 4
|
28天前
|
机器学习/深度学习 缓存 算法
Python算法设计中的时间复杂度与空间复杂度,你真的理解对了吗?
【10月更文挑战第4天】在Python编程中,算法的设计与优化至关重要,尤其在数据处理、科学计算及机器学习领域。本文探讨了评估算法性能的核心指标——时间复杂度和空间复杂度。通过详细解释两者的概念,并提供快速排序和字符串反转的示例代码,帮助读者深入理解这些概念。同时,文章还讨论了如何在实际应用中平衡时间和空间复杂度,以实现最优性能。
56 6
|
25天前
|
存储 机器学习/深度学习 算法
蓝桥杯练习题(三):Python组之算法训练提高综合五十题
蓝桥杯Python编程练习题的集合,涵盖了从基础到提高的多个算法题目及其解答。
46 3
蓝桥杯练习题(三):Python组之算法训练提高综合五十题
|
6天前
|
算法 测试技术 开发者
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗;代码审查通过检查源代码发现潜在问题,提高代码质量和团队协作效率。本文介绍了一些实用的技巧和工具,帮助开发者提升开发效率。
11 3
|
9天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
28 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
14天前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
22天前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
46 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
30天前
|
存储 算法 安全
Python 加密算法详解与应用
Python 加密算法详解与应用
19 1
|
1月前
|
搜索推荐 Java Go
探究桶排序算法
探究桶排序算法
16 1