论文阅读之 Inferring Analogous Attributes CVPR 2014

简介: Inferring Analogous Attributes     CVPR  2014 Chao-Yeh Chen and Kristen Grauman   Abstract: The appearance of an attribute can vary considerably from class to class (e.

Inferring Analogous Attributes     CVPR  2014

Chao-Yeh Chen and Kristen Grauman

 

Abstract:

The appearance of an attribute can vary considerably from class to class (e.g., a “fluffy” dog vs. a “fluffy” towel), making standard class-independent attribute models break down. Yet, training object-specific models for each attribute can be impractical, and defeats the purpose of using attributes to bridge category boundaries. We propose a novel form of transfer learning that addresses this dilemma. We develop a tensor factorization approach which, given a sparse set of class-specific attribute classifiers, can infer new ones for object-attribute pairs unobserved during training. For example, even though the system has no labeled images of striped dogs, it can use its knowledge of other attributes and objects to tailor “stripedness” to the dog category. With two large-scale datasets, we demonstrate both the need for category-sensitive attributes as well as our method’s successful transfer. Our inferred attribute classifiers perform similarly well to those trained with the luxury of labeled class-specific instances, and much better than those restricted to traditional modes of transfer.

 

 

从上图可以看出,通过学习一些特定目标的属性分类器,我们可以类推出相似的属性分类器.该分类器是对目标敏感的,虽然没有特定种类的带标签的训练图像.

 

1.Introduction:

 

本文的核心贡献有3点:

1.First, performing transfer jointly in the space of two labeled aspects of the data—namely, categories and attributes—is new. Critically, this means our method is not confined to transfer along same-object or same-attribute boundaries; rather, it discovers analogical relationships based on some mixture of previously seen objects and attributes.

第一点,就是与传统的转移学习不同,本文的转移是联合的转移,即:目标种类和属性的转移.

 

2.Second, our approach produces a discriminative model for an attribute with zero training examples from that category.

第二点,就是产生一种判别性的模型,尽管该类属性没有训练样本.

 

3.Third, while prior methods often require information about which classes should transfer to which [2, 29, 26, 1] (e.g., that a motorcycle detector might transfer well to a bicycle), our approach naturally discovers where transfer is possible based on how the observed attribute models relate. It can transfer easily between multiple classes at once, not only pairs, and we avoid the guesswork of manually specifying where transfer is likely.

第三点,就是本文所提出的方法不需要关于什么转移到什么的信息.而可以在多种类别之间很方便的转移.

 

2. Related Work

In contrast, our approach implicitly discovers analogical relationships among object-sensitive attribute classifiers, and our goal is to generate
novel category-sensitive attribute classifiers.

 

3. Approach

Given training images labeled by their category and one or more attributes, our method produces as output a series of category-sensitive attribute classifiers. Some of those classifiers are explicitly trained with the labeled data, while the rest are inferred by our method. We show how to create these analogous attribute classifiers via tensor completion.

In the following, we first describe how we train category-sensitive classifiers (Sec. 3.1). Then we define the tensor of attributes (Sec. 3.2) and show how we use it to infer analogous models (Sec. 3.3). Finally, we discuss certain salient aspects of the method design (Sec. 3.4).

 

3.1. Learning Category-Sensitive Attributes

在现有的系统当中,属性的训练是通过一种种类之间相互独立的方式 ( in a category-independent manner )进行.

在这个工作中,我们挑战传统的训练方式,即:in a completely category-indenpent mannner.

while attributes’ visual cues are often shared among some objects, the sharing is not universal. It can dilute(稀释) the learning process to pool cross-category exemplars indiscriminately. (在某些物体中,属性的视觉线索通常是共享的,但是这种共享不是普遍的.能够非判别性的稀释学习过程来集中跨种类的样本).

 

一种比较 naive 的做法就是,instead train category-sensitive attributes would be to partition training exemplars by their category labels, and train one attribute per category. 当有足够的 attribute + object combinations 的带标签的样本时,这种策略可能是足够的.但是,初步实验证明该方法是次于训练单个普遍的属性.我们归结了两点原因:

1.even in large-scale collections, the long-tailed distribution of object/scene/attribute occurrences in the real world means that some label pairs will be undersampled, leaving inadequate exemplars to build a statistically sound model,

2.this naive approach completely ignores attributes’ inter-class semantic ties. 属性类别之间的语意连接.

 

To overcome these shortcomings, we instead use an importance-weighted support vector machine (SVM) to train each category-sensitive attribute. 每一个训练样本(xi, yi)都包括一个图像描述xi,和标签yi 属于{-1, +1}.

 

相关文章
|
4天前
|
存储 弹性计算 人工智能
【2025云栖精华内容】 打造持续领先,全球覆盖的澎湃算力底座——通用计算产品发布与行业实践专场回顾
2025年9月24日,阿里云弹性计算团队多位产品、技术专家及服务器团队技术专家共同在【2025云栖大会】现场带来了《通用计算产品发布与行业实践》的专场论坛,本论坛聚焦弹性计算多款通用算力产品发布。同时,ECS云服务器安全能力、资源售卖模式、计算AI助手等用户体验关键环节也宣布升级,让用云更简单、更智能。海尔三翼鸟云服务负责人刘建锋先生作为特邀嘉宾,莅临现场分享了关于阿里云ECS g9i推动AIoT平台的场景落地实践。
【2025云栖精华内容】 打造持续领先,全球覆盖的澎湃算力底座——通用计算产品发布与行业实践专场回顾
|
3天前
|
云安全 人工智能 自然语言处理
阿里云x硅基流动:AI安全护栏助力构建可信模型生态
阿里云AI安全护栏:大模型的“智能过滤系统”。
|
3天前
|
人工智能 自然语言处理 自动驾驶
关于举办首届全国大学生“启真问智”人工智能模型&智能体大赛决赛的通知
关于举办首届全国大学生“启真问智”人工智能模型&智能体大赛决赛的通知
|
4天前
|
Linux 虚拟化 iOS开发
VMware Workstation Pro 25H2 for Windows & Linux - 领先的免费桌面虚拟化软件
VMware Workstation Pro 25H2 for Windows & Linux - 领先的免费桌面虚拟化软件
940 4
VMware Workstation Pro 25H2 for Windows & Linux - 领先的免费桌面虚拟化软件
|
6天前
|
存储 机器学习/深度学习 人工智能
大模型微调技术:LoRA原理与实践
本文深入解析大语言模型微调中的关键技术——低秩自适应(LoRA)。通过分析全参数微调的计算瓶颈,详细阐述LoRA的数学原理、实现机制和优势特点。文章包含完整的PyTorch实现代码、性能对比实验以及实际应用场景,为开发者提供高效微调大模型的实践指南。
602 2
|
5天前
|
JavaScript API 开发工具
如何在原生App中调用Uniapp的原生功能?
如何在原生App中调用Uniapp的原生功能?
299 139
|
6天前
|
存储 人工智能 Java
AI 超级智能体全栈项目阶段四:学术分析 AI 项目 RAG 落地指南:基于 Spring AI 的本地与阿里云知识库实践
本文介绍RAG(检索增强生成)技术,结合Spring AI与本地及云知识库实现学术分析AI应用,利用阿里云Qwen-Plus模型提升回答准确性与可信度。
286 90
AI 超级智能体全栈项目阶段四:学术分析 AI 项目 RAG 落地指南:基于 Spring AI 的本地与阿里云知识库实践