论文笔记之:Learning Cross-Modal Deep Representations for Robust Pedestrian Detection

简介: Learning Cross-Modal Deep Representations for Robust Pedestrian Detection 2017-04-11  19:40:22  Motivation:  本文主要是考虑了在光照极端恶劣的情况下,如何充分的利用 thermal data 进行协助学习提升 可见光图像的 特征表达能力,而借鉴了 ICCV 2015 年的一个文章,称为:监督迁移的方法,以一种模态的特征为 label,以监督学习的方式实现无监督学习。

 

Learning Cross-Modal Deep Representations for Robust Pedestrian Detection

2017-04-11  19:40:22 

 

Motivation:

  本文主要是考虑了在光照极端恶劣的情况下,如何充分的利用 thermal data 进行协助学习提升 可见光图像的 特征表达能力,而借鉴了 ICCV 2015 年的一个文章,称为:监督迁移的方法,以一种模态的特征为 label,以监督学习的方式实现无监督学习。说到这里可能比较让人糊涂,什么叫:以监督学习的方式实现无监督学习?说道监督学习,因为这里 training RGB modal 是以监督学习的方式进行训练的,因为标签是以 thermal 提取出来的特征为调整的目标(称为 target label)。说到无监督学习,其实这里没有用到人工标注的数据,只是用到了网络提取出来的 thermal feature, 而这就是比较好的地方了。这也是那个 Supervised Transfer 文章的主要卖点,而这里作者将其应用到 multi-modal 的情况下。

  

 

 

  所以,很自然的就可以知道网络的大致设计:

  1. 首先要有特征的跨模态迁移,算是第一阶段:

  

 

 

    那么,可以看到上图就是刚刚讲的 监督学习的方式进行特征迁移的过程。

 

  2. 有了这个增强的特征,我们就可以利用这个进行黑暗环境下的行人检测了:

  看到这个网络的设计,主要是原始特征和后续增强特征的组合了,然后进行最终的 bounding box regression 以及 softmax 分类。

  从而完成整个行人检测算法。效果之所以有提升,主要在于第二个网络提供了更好的 黑暗环境下从 thermal data 那里学习到的 feature。

 

  

  这就是文章的主题思想了。。。。

  

  作者在两个数据集上做了相关的实验。。。具体结果见原文了。

  

  Reference:

  1. Learning Cross-Modal Deep Representations for Robust Pedestrian Detection. In CVPR, 2017. 

  2. S. Gupta, J. Hoffman, and J. Malik. Cross modal distillation for supervision transfer. In CVPR, 2016. 

  3. J. Hoffman, S. Gupta, and T. Darrell. Learning with side information through modality hallucination. In CVPR, 2016 

 

   

相关文章
|
1月前
|
机器学习/深度学习 编解码 算法
论文精度笔记(二):《Deep Learning based Face Liveness Detection in Videos 》
论文提出了基于深度学习的面部欺骗检测技术,使用LRF-ELM和CNN两种模型,在NUAA和CASIA数据库上进行实验,发现LRF-ELM在检测活体面部方面更为准确。
26 1
论文精度笔记(二):《Deep Learning based Face Liveness Detection in Videos 》
|
机器学习/深度学习 资源调度 算法
【RLchina第四讲】Model-Based Reinforcement Learning(上)
【RLchina第四讲】Model-Based Reinforcement Learning(上)
675 0
|
机器学习/深度学习 算法
【RLchina第四讲】Model-Based Reinforcement Learning(下)
【RLchina第四讲】Model-Based Reinforcement Learning(下)
179 0
|
机器学习/深度学习 人工智能 算法
【5分钟 Paper】Reinforcement Learning with Deep Energy-Based Policies
【5分钟 Paper】Reinforcement Learning with Deep Energy-Based Policies
123 0
|
机器学习/深度学习 编解码 数据可视化
Speech Emotion Recognition With Local-Global aware Deep Representation Learning论文解读
语音情感识别(SER)通过从语音信号中推断人的情绪和情感状态,在改善人与机器之间的交互方面发挥着至关重要的作用。尽管最近的工作主要集中于从手工制作的特征中挖掘时空信息,但我们探索如何从动态时间尺度中建模语音情绪的时间模式。
140 0
|
机器学习/深度学习 存储 自然语言处理
【论文解读】A review on the attention mechanism of deep learning
注意力已经成为深度学习中最重要的概念之一。本文旨在对近年来提出的最新注意力模型作概述。我们建立了一个较为通用的模型,此外根据四个标准即注意力的柔软性、输入特征的形式、输入表示和输出表示来对当前注意力模型进行分类。最后讨论了注意力在深度学习可解释上的作用。
853 0
|
决策智能
论文笔记之:Collaborative Deep Reinforcement Learning for Joint Object Search
Collaborative Deep Reinforcement Learning for Joint Object Search   CVPR 2017 Motivation:   传统的 bottom-up object region proposals 的方法,由于提取了较多的 proposal,导致后续计算必须依赖于抢的计算能力,如 GPU 等。
|
数据挖掘
Deep Dive into Bayesian Classification Algorithm
A lot of our online experience depends significantly on machine learning algorithms. One such algorithm is Bayesian Classification Algorithm.
1424 0
Deep Dive into Bayesian Classification Algorithm
|
机器学习/深度学习 算法 文件存储
论文笔记系列-Neural Architecture Search With Reinforcement Learning
摘要 神经网络在多个领域都取得了不错的成绩,但是神经网络的合理设计却是比较困难的。在本篇论文中,作者使用 递归网络去省城神经网络的模型描述,并且使用 增强学习训练RNN,以使得生成得到的模型在验证集上取得最大的准确率。
3307 0
论文笔记之:Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning
论文笔记之:Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning  2017-06-06  21:43:53      这篇文章的 Motivation 来自于 MDNet:         本文所...