论文笔记之:Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning

简介: 论文笔记之:Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning 2017-06-06  21:43:53    这篇文章的 Motivation 来自于 MDNet:     本文所...

论文笔记之:Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning 

2017-06-06  21:43:53 

 

  这篇文章的 Motivation 来自于 MDNet:

  

 

 

 本文所提出的 framework 为:

 

 

 

 

 

 

 

 

 

 

 

 

 

  

相关文章
|
机器学习/深度学习 资源调度 算法
【RLchina第四讲】Model-Based Reinforcement Learning(上)
【RLchina第四讲】Model-Based Reinforcement Learning(上)
675 0
|
机器学习/深度学习 算法
【RLchina第四讲】Model-Based Reinforcement Learning(下)
【RLchina第四讲】Model-Based Reinforcement Learning(下)
179 0
|
机器学习/深度学习 编解码 算法
【5分钟 Paper】Dueling Network Architectures for Deep Reinforcement Learning
【5分钟 Paper】Dueling Network Architectures for Deep Reinforcement Learning
118 0
|
机器学习/深度学习 人工智能 算法
【5分钟 Paper】Reinforcement Learning with Deep Energy-Based Policies
【5分钟 Paper】Reinforcement Learning with Deep Energy-Based Policies
123 0
|
机器学习/深度学习 存储 自然语言处理
【论文解读】A review on the attention mechanism of deep learning
注意力已经成为深度学习中最重要的概念之一。本文旨在对近年来提出的最新注意力模型作概述。我们建立了一个较为通用的模型,此外根据四个标准即注意力的柔软性、输入特征的形式、输入表示和输出表示来对当前注意力模型进行分类。最后讨论了注意力在深度学习可解释上的作用。
853 0
|
机器学习/深度学习 搜索推荐
【推荐系统论文精读系列】(十四)--Information Fusion-Based Deep Neural Attentive Matrix Factorization Recommendation
推荐系统的出现,有效地缓解了信息过载的问题。而传统的推荐系统,要么忽略用户和物品的丰富属性信息,如用户的人口统计特征、物品的内容特征等,面对稀疏性问题,要么采用全连接网络连接特征信息,忽略不同属性信息之间的交互。本文提出了基于信息融合的深度神经注意矩阵分解(ifdnamf)推荐模型,该模型引入了用户和物品的特征信息,并采用不同信息域之间的交叉积来学习交叉特征。此外,还利用注意机制来区分不同交叉特征对预测结果的重要性。此外,ifdnamf采用深度神经网络来学习用户与项目之间的高阶交互。同时,作者在电影和图书这两个数据集上进行了广泛的实验,并证明了该模型的可行性和有效性。
296 0
【推荐系统论文精读系列】(十四)--Information Fusion-Based Deep Neural Attentive Matrix Factorization Recommendation
|
决策智能
论文笔记之:Collaborative Deep Reinforcement Learning for Joint Object Search
Collaborative Deep Reinforcement Learning for Joint Object Search   CVPR 2017 Motivation:   传统的 bottom-up object region proposals 的方法,由于提取了较多的 proposal,导致后续计算必须依赖于抢的计算能力,如 GPU 等。
|
机器学习/深度学习 算法 文件存储
论文笔记系列-Neural Architecture Search With Reinforcement Learning
摘要 神经网络在多个领域都取得了不错的成绩,但是神经网络的合理设计却是比较困难的。在本篇论文中,作者使用 递归网络去省城神经网络的模型描述,并且使用 增强学习训练RNN,以使得生成得到的模型在验证集上取得最大的准确率。
3307 0
|
机器学习/深度学习 人工智能 自然语言处理
18 Issues in Current Deep Reinforcement Learning from ZhiHu
深度强化学习的18个关键问题   from: https://zhuanlan.zhihu.com/p/32153603     85 人赞了该文章 深度强化学习的问题在哪里?未来怎么走?哪些方面可以突破? 这两天我阅读了两篇篇猛文A Brief Survey of Deep Reinforcement Learning 和 Deep Reinforcement Learning: An Overview ,作者排山倒海的引用了200多篇文献,阐述强化学习未来的方向。
|
机器学习/深度学习
笔记:Wide & Deep Learning for Recommender Systems
笔记:Wide & Deep Learning for Recommender Systems 前两天自从看到一张图后: 就一直想读一下相关论文,这两天终于有时间把论文看了一下,就是这篇Wide & Deep Learning for Recommender Systems 首先简介,主要.
2394 0