我对卷积神经网络的一点粗浅的理解

简介: Convolutional Neural Network,卷积神经网络,简称CNN,最近几年再次流行起来。CNN和普通的机器学习算法有什么相同,有什么不同?简单说,CNN=A+B,即CNN包括两个方面的功能:A:feature extactor 特征提取器普通的机器学习算法,比如决策树、随机森林、svm、逻辑回归/softmax等,它的输入通常就是若干个features而CNN的输入,是图片!我们当然可以把图像像素作为feature vector中的一个维度。

Convolutional Neural Network,卷积神经网络,简称CNN,最近几年再次流行起来。

CNN和普通的机器学习算法有什么相同,有什么不同?

简单说,CNN=A+B,即CNN包括两个方面的功能:

A:feature extactor 特征提取器

普通的机器学习算法,比如决策树、随机森林、svm、逻辑回归/softmax等,它的输入通常就是若干个features

而CNN的输入,是图片!

我们当然可以把图像像素作为feature vector中的一个维度。但是这毕竟过于naive。往往并不怎么work。

CNN中的特征提取,是通过卷积层完成的。这里说的卷基层,包括狭义的卷积、池化(下采样)。

个人认为,我们并不一定要把CNN中的卷积层看作传统人工智能中的神经网络的改进。因为真的有点勉强:传统神经网络的输入就是一个个的feature vector,用作分类器或者回归器。CNN的输入则是图片。

B:classifier or regressor 分类器或回归器

CNN中的全连接层输出层,这个其实是和传统的神经网络一致的:处理的输入是feature vectors,输出的是类别label或者连续的预测数值

总结

CNN = 特征提取(卷积层)+ 分类(全连接层)

其中特征提取是说,feature是学出来的,而不是“手工设计的”(比如SIFT,SURF,ORB,HOG,LBP,HSC等)

但是这里还有一个疑问:学出来的feature应该是唯一的吗?怎样的学出来的特征算是“好的特征”?我们固然可以设计不同的网络结构,来学习出不同的特征。但是怎样的特征才是好的特征?以及,我们能否从特征学习的过程中,得到一些规律,用于辅助手工设计特征?毕竟搞一个CNN的话,要大量数据或者微调,而且需要GPU,并且还是一个black box缺乏理论支持的感觉。。

有想法的请留言。欢迎吐槽。

目录
相关文章
|
4天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
29 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
27天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
88 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
1月前
|
机器学习/深度学习
RT-DETR改进策略【Neck】| GSConv+Slim Neck:混合深度可分离卷积和标准卷积的轻量化网络设计
RT-DETR改进策略【Neck】| GSConv+Slim Neck:混合深度可分离卷积和标准卷积的轻量化网络设计
58 11
|
1月前
|
机器学习/深度学习 编解码 自动驾驶
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
44 3
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
|
1月前
|
机器学习/深度学习 存储
RT-DETR改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络
RT-DETR改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络
46 0
RT-DETR改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络
|
1月前
|
机器学习/深度学习 编解码 移动开发
RT-DETR改进策略【Conv和Transformer】| TPAMI-2024 Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能
RT-DETR改进策略【Conv和Transformer】| TPAMI-2024 Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能
39 5
RT-DETR改进策略【Conv和Transformer】| TPAMI-2024 Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能
|
1月前
|
机器学习/深度学习
YOLOv11改进策略【Neck】| GSConv+Slim Neck:混合深度可分离卷积和标准卷积的轻量化网络设计
YOLOv11改进策略【Neck】| GSConv+Slim Neck:混合深度可分离卷积和标准卷积的轻量化网络设计
65 8
YOLOv11改进策略【Neck】| GSConv+Slim Neck:混合深度可分离卷积和标准卷积的轻量化网络设计
|
1月前
|
机器学习/深度学习 编解码 自动驾驶
YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
78 16
YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
|
1月前
|
机器学习/深度学习 存储
YOLOv11改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络
YOLOv11改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络
74 15
YOLOv11改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络
|
1月前
|
机器学习/深度学习 编解码 移动开发
YOLOv11改进策略【Conv和Transformer】| TPAMI-2024 Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能
YOLOv11改进策略【Conv和Transformer】| TPAMI-2024 Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能
36 7
YOLOv11改进策略【Conv和Transformer】| TPAMI-2024 Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能

热门文章

最新文章