py-faster-rcnn之从solver文件创建solver对象,建立pythonlayer-阿里云开发者社区

开发者社区> 人工智能> 正文
登录阅读全文

py-faster-rcnn之从solver文件创建solver对象,建立pythonlayer

简介: faster-rcnn在训练阶段,根据一个solver的prototxt文件创建相应的网络。仅凭一个prototxt就创建网络?其实还涉及到自定义的PythonLayer. 比如lib/rpn/anchor_target_layer.

faster-rcnn在训练阶段,根据一个solver的prototxt文件创建相应的网络。仅凭一个prototxt就创建网络?其实还涉及到自定义的PythonLayer. 比如lib/rpn/anchor_target_layer.py,一开始感觉它只定义了一个AnchorTargetLayer类但是没有使用过(grep查找找不到),仔细分析源码执行过程才发现,是因为使用了Boost.Python混编相关的技术,是在trainval.prototxt中有定义'python'类的层,并且指定到AnchorTargetLayer,而通过caffe的python接口,实例化solver成员的时候通过solver的prototxt引入trainval.prototxt,随后逐层初始化,涉及到PythonLayer的时候则调用Boost.Python代码来实例化它。

以end2end方式的代码分析,自顶向下逐步解析。假定处于py-faster-rcnn目录。

experiments/scripts/faster_rcnn_end2end.sh 指定了solver_prototxt

tools/train_net.py 根据solver_prototxt执行训练任务

lib/fast_rcnn/train.py -> train_net()函数 -> SolverWrapper类实例 -> SolverWrapper构造函数,以solver_prototxt作为参数

caffe-fast-rcnn/python/caffe/_caffe.cpp -> #include的sgd_solvers.hpp 引入了SGDSolver

caffe-fast-rcnn/src/caffe/solver.cpp 构造函数 -> InitTrainNet() -> 调用Net()的构造函数 -> Net()的Init()函数

caffe-fast-rcnn/src/caffe/lyaer_factory.cpp及对应的hpp文件 -> layer的实例化 -> 对于自定义的PythonLayer类,实例化它

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

分享: