第四周编程作业(一)-Building your Deep Neural Network: Step by Step(一)

简介: 第四周编程作业(一)-Building your Deep Neural Network: Step by Step(一)

Building your Deep Neural Network: Step by Step


Welcome to your week 4 assignment (part 1 of 2)! You have previously trained a 2-layer Neural Network (with a single hidden layer). This week, you will build a deep neural network, with as many layers as you want!


  • In this notebook, you will implement all the functions required to build a deep neural network.
  • In the next assignment, you will use these functions to build a deep neural network for image classification.


After this assignment you will be able to:

  • Use non-linear units like ReLU to improve your model
  • Build a deeper neural network (with more than 1 hidden layer)
  • Implement an easy-to-use neural network class


Notation:

  • Superscript $[l]$ denotes a quantity associated with the $l^{th}$ layer.
  • Example: $a^{[L]}$ is the $L^{th}$ layer activation. $W^{[L]}$ and $b^{[L]}$ are the $L^{th}$ layer parameters.
  • Superscript $(i)$ denotes a quantity associated with the $i^{th}$ example.
  • Example: $x^{(i)}$ is the $i^{th}$ training example.
  • Lowerscript $i$ denotes the $i^{th}$ entry of a vector.
  • Example: $a^{[l]}_i$ denotes the $i^{th}$ entry of the $l^{th}$ layer's activations).

Let's get started!


1 - Packages


Let's first import all the packages that you will need during this assignment.

  • numpy is the main package for scientific computing with Python.
  • matplotlib is a library to plot graphs in Python.
  • dnn_utils provides some necessary functions for this notebook.
  • testCases provides some test cases to assess the correctness of your functions
  • np.random.seed(1) is used to keep all the random function calls consistent. It will help us grade your work. Please don't change the seed.

import numpy as np
import h5py
import matplotlib.pyplot as plt
from testCases_v2 import *
from dnn_utils_v2 import sigmoid, sigmoid_backward, relu, relu_backward
%matplotlib inline
plt.rcParams['figure.figsize'] = (5.0, 4.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
%load_ext autoreload
%autoreload 2
np.random.seed(1)

/opt/conda/lib/python3.5/site-packages/matplotlib/font_manager.py:273: UserWarning: Matplotlib is building the font cache using fc-list. This may take a moment.
  warnings.warn('Matplotlib is building the font cache using fc-list. This may take a moment.')
/opt/conda/lib/python3.5/site-packages/matplotlib/font_manager.py:273: UserWarning: Matplotlib is building the font cache using fc-list. This may take a moment.
  warnings.warn('Matplotlib is building the font cache using fc-list. This may take a moment.')


2 - Outline of the Assignment


To build your neural network, you will be implementing several "helper functions". These helper functions will be used in the next assignment to build a two-layer neural network and an L-layer neural network. Each small helper function you will implement will have detailed instructions that will walk you through the necessary steps. Here is an outline of this assignment, you will:

  • Initialize the parameters for a two-layer network and for an $L$-layer neural network.
  • Implement the forward propagation module (shown in purple in the figure below).
  • Complete the LINEAR part of a layer's forward propagation step (resulting in $Z^{[l]}$).
  • We give you the ACTIVATION function (relu/sigmoid).
  • Combine the previous two steps into a new [LINEAR->ACTIVATION] forward function.
  • Stack the [LINEAR->RELU] forward function L-1 time (for layers 1 through L-1) and add a [LINEAR->SIGMOID] at the end (for the final layer $L$). This gives you a new L_model_forward function.
  • Compute the loss.
  • Implement the backward propagation module (denoted in red in the figure below).
  • Complete the LINEAR part of a layer's backward propagation step.
  • We give you the gradient of the ACTIVATE function (relu_backward/sigmoid_backward)
  • Combine the previous two steps into a new [LINEAR->ACTIVATION] backward function.
  • Stack [LINEAR->RELU] backward L-1 times and add [LINEAR->SIGMOID] backward in a new L_model_backward function
  • Finally update the parameters.


![](images/final outline.png)

<caption><center> Figure 1</center></caption>

Note that for every forward function, there is a corresponding backward function. That is why at every step of your forward module you will be storing some values in a cache. The cached values are useful for computing gradients. In the backpropagation module you will then use the cache to calculate the gradients. This assignment will show you exactly how to carry out each of these steps.


3 - Initialization


You will write two helper functions that will initialize the parameters for your model. The first function will be used to initialize parameters for a two layer model. The second one will generalize this initialization process to $L$ layers.


3.1 - 2-layer Neural Network


Exercise: Create and initialize the parameters of the 2-layer neural network.


Instructions:

  • The model's structure is: LINEAR -> RELU -> LINEAR -> SIGMOID.
  • Use random initialization for the weight matrices. Use np.random.randn(shape)*0.01 with the correct shape.
  • Use zero initialization for the biases. Use np.zeros(shape).

# GRADED FUNCTION: initialize_parameters
def initialize_parameters(n_x, n_h, n_y):
    """
    Argument:
    n_x -- size of the input layer
    n_h -- size of the hidden layer
    n_y -- size of the output layer
    Returns:
    parameters -- python dictionary containing your parameters:
                    W1 -- weight matrix of shape (n_h, n_x)
                    b1 -- bias vector of shape (n_h, 1)
                    W2 -- weight matrix of shape (n_y, n_h)
                    b2 -- bias vector of shape (n_y, 1)
    """
    np.random.seed(1)
    ### START CODE HERE ### (≈ 4 lines of code)
    W1 = np.random.randn(n_h,n_x)*0.01
    b1 = np.zeros((n_h,1))
    W2 = np.random.randn(n_y,n_h)*0.01
    b2 = np.zeros((n_y,1))
    ### END CODE HERE ###
    assert(W1.shape == (n_h, n_x))
    assert(b1.shape == (n_h, 1))
    assert(W2.shape == (n_y, n_h))
    assert(b2.shape == (n_y, 1))
    parameters = {"W1": W1,
                  "b1": b1,
                  "W2": W2,
                  "b2": b2}
    return parameters

parameters = initialize_parameters(3,2,1)
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))

W1 = [[ 0.01624345 -0.00611756 -0.00528172]
 [-0.01072969  0.00865408 -0.02301539]]
b1 = [[ 0.]
 [ 0.]]
W2 = [[ 0.01744812 -0.00761207]]
b2 = [[ 0.]]


Expected output:

<table style="width:80%">

<tr>

<td> W1 </td>

<td> [[ 0.01624345 -0.00611756 -0.00528172]

[-0.01072969  0.00865408 -0.02301539]] </td>

</tr>

<tr>

<td> b1</td>

<td>[[ 0.]

[ 0.]]</td>

</tr>

<tr>

<td>W2</td>

<td> [[ 0.01744812 -0.00761207]]</td>

</tr>

<tr>

<td> b2 </td>

<td> [[ 0.]] </td>

</tr>

</table>


3.2 - L-layer Neural Network


The initialization for a deeper L-layer neural network is more complicated because there are many more weight matrices and bias vectors. When completing the initialize_parameters_deep, you should make sure that your dimensions match between each layer. Recall that $n^{[l]}$ is the number of units in layer $l$. Thus for example if the size of our input $X$ is $(12288, 209)$ (with $m=209$ examples) then:

<table style="width:100%">

<tr>
    <td>  </td> 
    <td> **Shape of W** </td> 
    <td> **Shape of b**  </td> 
    <td> **Activation** </td>
    <td> **Shape of Activation** </td> 
<tr>
<tr>
    <td> **Layer 1** </td> 
    <td> $(n^{[1]},12288)$ </td> 
    <td> $(n^{[1]},1)$ </td> 
    <td> $Z^{[1]} = W^{[1]}  X + b^{[1]} $ </td> 
    <td> $(n^{[1]},209)$ </td> 
<tr>
<tr>
    <td> **Layer 2** </td> 
    <td> $(n^{[2]}, n^{[1]})$  </td> 
    <td> $(n^{[2]},1)$ </td> 
    <td>$Z^{[2]} = W^{[2]} A^{[1]} + b^{[2]}$ </td> 
    <td> $(n^{[2]}, 209)$ </td> 
<tr>
   <tr>
    <td> $\vdots$ </td> 
    <td> $\vdots$  </td> 
    <td> $\vdots$  </td> 
    <td> $\vdots$</td> 
    <td> $\vdots$  </td> 
<tr>


<tr>

<td> Layer L-1 </td>

<td> $(n^{[L-1]}, n^{[L-2]})$ </td>

<td> $(n^{[L-1]}, 1)$  </td>

<td>$Z^{[L-1]} =  W^{[L-1]} A^{[L-2]} + b^{[L-1]}$ </td>

<td> $(n^{[L-1]}, 209)$ </td>

<tr>

<tr>

<td> Layer L </td>

<td> $(n^{[L]}, n^{[L-1]})$ </td>

<td> $(n^{[L]}, 1)$ </td>

<td> $Z^{[L]} =  W^{[L]} A^{[L-1]} + b^{[L]}$</td>

<td> $(n^{[L]}, 209)$  </td>

<tr>

</table>

Remember that when we compute $W X + b$ in python, it carries out broadcasting. For example, if:

$$ W = \begin{bmatrix}

j  & k  & l\

m  & n & o \

p  & q & r

\end{bmatrix};;; X = \begin{bmatrix}

a  & b  & c\

d  & e & f \

g  & h & i

\end{bmatrix} ;;; b =\begin{bmatrix}

s  \

t  \

u

\end{bmatrix}\tag{2}$$

Then $WX + b$ will be:

$$ WX + b = \begin{bmatrix}

(ja + kd + lg) + s  & (jb + ke + lh) + s  & (jc + kf + li)+ s\

(ma + nd + og) + t & (mb + ne + oh) + t & (mc + nf + oi) + t\

(pa + qd + rg) + u & (pb + qe + rh) + u & (pc + qf + ri)+ u

\end{bmatrix}\tag{3}  $$


Exercise: Implement initialization for an L-layer Neural Network.


Instructions:

  • The model's structure is [LINEAR -> RELU] $ \times$ (L-1) -> LINEAR -> SIGMOID. I.e., it has $L-1$ layers using a ReLU activation function followed by an output layer with a sigmoid activation function.
  • Use random initialization for the weight matrices. Use np.random.rand(shape) * 0.01.
  • Use zeros initialization for the biases. Use np.zeros(shape).
  • We will store $n^{[l]}$, the number of units in different layers, in a variable layer_dims. For example, the layer_dims for the "Planar Data classification model" from last week would have been [2,4,1]: There were two inputs, one hidden layer with 4 hidden units, and an output layer with 1 output unit. Thus means W1's shape was (4,2), b1 was (4,1), W2 was (1,4) and b2 was (1,1). Now you will generalize this to $L$ layers!
  • Here is the implementation for $L=1$ (one layer neural network). It should inspire you to implement the general case (L-layer neural network).

if L == 1:
        parameters["W" + str(L)] = np.random.randn(layer_dims[1], layer_dims[0]) * 0.01
        parameters["b" + str(L)] = np.zeros((layer_dims[1], 1))

# GRADED FUNCTION: initialize_parameters_deep
def initialize_parameters_deep(layer_dims):
    """
    Arguments:
    layer_dims -- python array (list) containing the dimensions of each layer in our network
    Returns:
    parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL":
                    Wl -- weight matrix of shape (layer_dims[l], layer_dims[l-1])
                    bl -- bias vector of shape (layer_dims[l], 1)
    """
    np.random.seed(3)
    parameters = {}
    L = len(layer_dims)            # number of layers in the network
    for l in range(1, L):
        ### START CODE HERE ### (≈ 2 lines of code)
        parameters["W" + str(l)] = np.random.randn(layer_dims[l], layer_dims[l-1]) * 0.01
        parameters["b" + str(l)] = np.zeros((layer_dims[l], 1))
        ### END CODE HERE ###
        assert(parameters['W' + str(l)].shape == (layer_dims[l], layer_dims[l-1]))
        assert(parameters['b' + str(l)].shape == (layer_dims[l], 1))
    return parameters

parameters = initialize_parameters_deep([5,4,3])
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))

W1 = [[ 0.01788628  0.0043651   0.00096497 -0.01863493 -0.00277388]
 [-0.00354759 -0.00082741 -0.00627001 -0.00043818 -0.00477218]
 [-0.01313865  0.00884622  0.00881318  0.01709573  0.00050034]
 [-0.00404677 -0.0054536  -0.01546477  0.00982367 -0.01101068]]
b1 = [[ 0.]
 [ 0.]
 [ 0.]
 [ 0.]]
W2 = [[-0.01185047 -0.0020565   0.01486148  0.00236716]
 [-0.01023785 -0.00712993  0.00625245 -0.00160513]
 [-0.00768836 -0.00230031  0.00745056  0.01976111]]
b2 = [[ 0.]
 [ 0.]
 [ 0.]]


Expected output:

<table style="width:80%">

<tr>

<td> W1 </td>

<td>[[ 0.01788628  0.0043651   0.00096497 -0.01863493 -0.00277388]

[-0.00354759 -0.00082741 -0.00627001 -0.00043818 -0.00477218]

[-0.01313865  0.00884622  0.00881318  0.01709573  0.00050034]

[-0.00404677 -0.0054536  -0.01546477  0.00982367 -0.01101068]]</td>

</tr>

<tr>

<td>b1 </td>

<td>[[ 0.]

[ 0.]

[ 0.]

[ 0.]]</td>

</tr>

<tr>

<td>W2 </td>

<td>[[-0.01185047 -0.0020565   0.01486148  0.00236716]

[-0.01023785 -0.00712993  0.00625245 -0.00160513]

[-0.00768836 -0.00230031  0.00745056  0.01976111]]</td>

</tr>

<tr>

<td>b2 </td>

<td>[[ 0.]

[ 0.]

[ 0.]]</td>

</tr>

</table>

相关文章
|
6月前
|
机器学习/深度学习 自然语言处理 算法
【论文精读】ACL 2022:Graph Pre-training for AMR Parsing and Generation
【论文精读】ACL 2022:Graph Pre-training for AMR Parsing and Generation
|
3月前
|
机器学习/深度学习 人工智能 算法
【博士每天一篇论文-算法】Collective Behavior of a Small-World Recurrent Neural System With Scale-Free Distrib
本文介绍了一种新型的尺度无标度高聚类回声状态网络(SHESN)模型,该模型通过模拟生物神经系统的特性,如小世界现象和无标度分布,显著提高了逼近复杂非线性动力学系统的能力,并在Mackey-Glass动态系统和激光时间序列预测等问题上展示了其优越的性能。
29 1
【博士每天一篇论文-算法】Collective Behavior of a Small-World Recurrent Neural System With Scale-Free Distrib
|
3月前
|
机器学习/深度学习 存储 算法
【博士每天一篇文献-算法】Memory augmented echo state network for time series prediction
本文介绍了一种记忆增强的回声状态网络(MA-ESN),它通过在储层中引入线性记忆模块和非线性映射模块来平衡ESN的记忆能力和非线性映射能力,提高了时间序列预测的性能,并在多个基准数据集上展示了其优越的记忆能力和预测精度。
29 3
【博士每天一篇文献-算法】Memory augmented echo state network for time series prediction
|
3月前
|
机器学习/深度学习 算法 物联网
【博士每天一篇论文-算法】Overview of Echo State Networks using Different Reservoirs and Activation Functions
本文研究了在物联网网络中应用回声状态网络(ESN)进行交通预测的不同拓扑结构,通过与SARIMA、CNN和LSTM等传统算法的比较,发现特定配置的ESN在数据速率和数据包速率预测方面表现更佳,证明了ESN在网络流量预测中的有效性。
31 4
|
自然语言处理 算法
【论文精读】COLING 2022 - CLIO: Role-interactive Multi-event Head Attention Network for DEE
将网络上的大量非结构化文本转换为结构化事件知识是NLP的一个关键但尚未解决的目标,特别是在处理文档级文本时。
73 0
|
机器学习/深度学习 编解码 固态存储
Single Shot MultiBox Detector论文翻译【修改】
Single Shot MultiBox Detector论文翻译【修改】
104 0
Single Shot MultiBox Detector论文翻译【修改】
|
机器学习/深度学习 PyTorch 算法框架/工具
Batch Normlization: Accelerating Deep Network Training by Reducing Internal Covariate Shift》论文详细解读
Batch Normlization: Accelerating Deep Network Training by Reducing Internal Covariate Shift》论文详细解读
125 0
Batch Normlization: Accelerating Deep Network Training by Reducing Internal Covariate Shift》论文详细解读
|
机器学习/深度学习 算法 数据挖掘
【论文泛读】 Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
【论文泛读】 Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
【论文泛读】 Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
|
算法 数据挖掘 知识图谱
Self-supervised graph convolutional network for multi-view clustering(论文阅读记录)
IEEE TRANSACTIONS ON MULTIMEDIA 2区top 2022 影响因子:6.005
434 0
|
机器学习/深度学习 计算机视觉
DL之FAN:FAN人脸对齐网络(Face Alignment depth Network)的论文简介、案例应用之详细攻略
DL之FAN:FAN人脸对齐网络(Face Alignment depth Network)的论文简介、案例应用之详细攻略
DL之FAN:FAN人脸对齐网络(Face Alignment depth Network)的论文简介、案例应用之详细攻略