第四周编程作业(一)-Building your Deep Neural Network: Step by Step(一)

简介: 第四周编程作业(一)-Building your Deep Neural Network: Step by Step(一)

Building your Deep Neural Network: Step by Step


Welcome to your week 4 assignment (part 1 of 2)! You have previously trained a 2-layer Neural Network (with a single hidden layer). This week, you will build a deep neural network, with as many layers as you want!


  • In this notebook, you will implement all the functions required to build a deep neural network.
  • In the next assignment, you will use these functions to build a deep neural network for image classification.


After this assignment you will be able to:

  • Use non-linear units like ReLU to improve your model
  • Build a deeper neural network (with more than 1 hidden layer)
  • Implement an easy-to-use neural network class


Notation:

  • Superscript $[l]$ denotes a quantity associated with the $l^{th}$ layer.
  • Example: $a^{[L]}$ is the $L^{th}$ layer activation. $W^{[L]}$ and $b^{[L]}$ are the $L^{th}$ layer parameters.
  • Superscript $(i)$ denotes a quantity associated with the $i^{th}$ example.
  • Example: $x^{(i)}$ is the $i^{th}$ training example.
  • Lowerscript $i$ denotes the $i^{th}$ entry of a vector.
  • Example: $a^{[l]}_i$ denotes the $i^{th}$ entry of the $l^{th}$ layer's activations).

Let's get started!


1 - Packages


Let's first import all the packages that you will need during this assignment.

  • numpy is the main package for scientific computing with Python.
  • matplotlib is a library to plot graphs in Python.
  • dnn_utils provides some necessary functions for this notebook.
  • testCases provides some test cases to assess the correctness of your functions
  • np.random.seed(1) is used to keep all the random function calls consistent. It will help us grade your work. Please don't change the seed.

import numpy as np
import h5py
import matplotlib.pyplot as plt
from testCases_v2 import *
from dnn_utils_v2 import sigmoid, sigmoid_backward, relu, relu_backward
%matplotlib inline
plt.rcParams['figure.figsize'] = (5.0, 4.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
%load_ext autoreload
%autoreload 2
np.random.seed(1)

/opt/conda/lib/python3.5/site-packages/matplotlib/font_manager.py:273: UserWarning: Matplotlib is building the font cache using fc-list. This may take a moment.
  warnings.warn('Matplotlib is building the font cache using fc-list. This may take a moment.')
/opt/conda/lib/python3.5/site-packages/matplotlib/font_manager.py:273: UserWarning: Matplotlib is building the font cache using fc-list. This may take a moment.
  warnings.warn('Matplotlib is building the font cache using fc-list. This may take a moment.')


2 - Outline of the Assignment


To build your neural network, you will be implementing several "helper functions". These helper functions will be used in the next assignment to build a two-layer neural network and an L-layer neural network. Each small helper function you will implement will have detailed instructions that will walk you through the necessary steps. Here is an outline of this assignment, you will:

  • Initialize the parameters for a two-layer network and for an $L$-layer neural network.
  • Implement the forward propagation module (shown in purple in the figure below).
  • Complete the LINEAR part of a layer's forward propagation step (resulting in $Z^{[l]}$).
  • We give you the ACTIVATION function (relu/sigmoid).
  • Combine the previous two steps into a new [LINEAR->ACTIVATION] forward function.
  • Stack the [LINEAR->RELU] forward function L-1 time (for layers 1 through L-1) and add a [LINEAR->SIGMOID] at the end (for the final layer $L$). This gives you a new L_model_forward function.
  • Compute the loss.
  • Implement the backward propagation module (denoted in red in the figure below).
  • Complete the LINEAR part of a layer's backward propagation step.
  • We give you the gradient of the ACTIVATE function (relu_backward/sigmoid_backward)
  • Combine the previous two steps into a new [LINEAR->ACTIVATION] backward function.
  • Stack [LINEAR->RELU] backward L-1 times and add [LINEAR->SIGMOID] backward in a new L_model_backward function
  • Finally update the parameters.


![](images/final outline.png)

<caption><center> Figure 1</center></caption>

Note that for every forward function, there is a corresponding backward function. That is why at every step of your forward module you will be storing some values in a cache. The cached values are useful for computing gradients. In the backpropagation module you will then use the cache to calculate the gradients. This assignment will show you exactly how to carry out each of these steps.


3 - Initialization


You will write two helper functions that will initialize the parameters for your model. The first function will be used to initialize parameters for a two layer model. The second one will generalize this initialization process to $L$ layers.


3.1 - 2-layer Neural Network


Exercise: Create and initialize the parameters of the 2-layer neural network.


Instructions:

  • The model's structure is: LINEAR -> RELU -> LINEAR -> SIGMOID.
  • Use random initialization for the weight matrices. Use np.random.randn(shape)*0.01 with the correct shape.
  • Use zero initialization for the biases. Use np.zeros(shape).

# GRADED FUNCTION: initialize_parameters
def initialize_parameters(n_x, n_h, n_y):
    """
    Argument:
    n_x -- size of the input layer
    n_h -- size of the hidden layer
    n_y -- size of the output layer
    Returns:
    parameters -- python dictionary containing your parameters:
                    W1 -- weight matrix of shape (n_h, n_x)
                    b1 -- bias vector of shape (n_h, 1)
                    W2 -- weight matrix of shape (n_y, n_h)
                    b2 -- bias vector of shape (n_y, 1)
    """
    np.random.seed(1)
    ### START CODE HERE ### (≈ 4 lines of code)
    W1 = np.random.randn(n_h,n_x)*0.01
    b1 = np.zeros((n_h,1))
    W2 = np.random.randn(n_y,n_h)*0.01
    b2 = np.zeros((n_y,1))
    ### END CODE HERE ###
    assert(W1.shape == (n_h, n_x))
    assert(b1.shape == (n_h, 1))
    assert(W2.shape == (n_y, n_h))
    assert(b2.shape == (n_y, 1))
    parameters = {"W1": W1,
                  "b1": b1,
                  "W2": W2,
                  "b2": b2}
    return parameters

parameters = initialize_parameters(3,2,1)
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))

W1 = [[ 0.01624345 -0.00611756 -0.00528172]
 [-0.01072969  0.00865408 -0.02301539]]
b1 = [[ 0.]
 [ 0.]]
W2 = [[ 0.01744812 -0.00761207]]
b2 = [[ 0.]]


Expected output:

<table style="width:80%">

<tr>

<td> W1 </td>

<td> [[ 0.01624345 -0.00611756 -0.00528172]

[-0.01072969  0.00865408 -0.02301539]] </td>

</tr>

<tr>

<td> b1</td>

<td>[[ 0.]

[ 0.]]</td>

</tr>

<tr>

<td>W2</td>

<td> [[ 0.01744812 -0.00761207]]</td>

</tr>

<tr>

<td> b2 </td>

<td> [[ 0.]] </td>

</tr>

</table>


3.2 - L-layer Neural Network


The initialization for a deeper L-layer neural network is more complicated because there are many more weight matrices and bias vectors. When completing the initialize_parameters_deep, you should make sure that your dimensions match between each layer. Recall that $n^{[l]}$ is the number of units in layer $l$. Thus for example if the size of our input $X$ is $(12288, 209)$ (with $m=209$ examples) then:

<table style="width:100%">

<tr>
    <td>  </td> 
    <td> **Shape of W** </td> 
    <td> **Shape of b**  </td> 
    <td> **Activation** </td>
    <td> **Shape of Activation** </td> 
<tr>
<tr>
    <td> **Layer 1** </td> 
    <td> $(n^{[1]},12288)$ </td> 
    <td> $(n^{[1]},1)$ </td> 
    <td> $Z^{[1]} = W^{[1]}  X + b^{[1]} $ </td> 
    <td> $(n^{[1]},209)$ </td> 
<tr>
<tr>
    <td> **Layer 2** </td> 
    <td> $(n^{[2]}, n^{[1]})$  </td> 
    <td> $(n^{[2]},1)$ </td> 
    <td>$Z^{[2]} = W^{[2]} A^{[1]} + b^{[2]}$ </td> 
    <td> $(n^{[2]}, 209)$ </td> 
<tr>
   <tr>
    <td> $\vdots$ </td> 
    <td> $\vdots$  </td> 
    <td> $\vdots$  </td> 
    <td> $\vdots$</td> 
    <td> $\vdots$  </td> 
<tr>


<tr>

<td> Layer L-1 </td>

<td> $(n^{[L-1]}, n^{[L-2]})$ </td>

<td> $(n^{[L-1]}, 1)$  </td>

<td>$Z^{[L-1]} =  W^{[L-1]} A^{[L-2]} + b^{[L-1]}$ </td>

<td> $(n^{[L-1]}, 209)$ </td>

<tr>

<tr>

<td> Layer L </td>

<td> $(n^{[L]}, n^{[L-1]})$ </td>

<td> $(n^{[L]}, 1)$ </td>

<td> $Z^{[L]} =  W^{[L]} A^{[L-1]} + b^{[L]}$</td>

<td> $(n^{[L]}, 209)$  </td>

<tr>

</table>

Remember that when we compute $W X + b$ in python, it carries out broadcasting. For example, if:

$$ W = \begin{bmatrix}

j  & k  & l\

m  & n & o \

p  & q & r

\end{bmatrix};;; X = \begin{bmatrix}

a  & b  & c\

d  & e & f \

g  & h & i

\end{bmatrix} ;;; b =\begin{bmatrix}

s  \

t  \

u

\end{bmatrix}\tag{2}$$

Then $WX + b$ will be:

$$ WX + b = \begin{bmatrix}

(ja + kd + lg) + s  & (jb + ke + lh) + s  & (jc + kf + li)+ s\

(ma + nd + og) + t & (mb + ne + oh) + t & (mc + nf + oi) + t\

(pa + qd + rg) + u & (pb + qe + rh) + u & (pc + qf + ri)+ u

\end{bmatrix}\tag{3}  $$


Exercise: Implement initialization for an L-layer Neural Network.


Instructions:

  • The model's structure is [LINEAR -> RELU] $ \times$ (L-1) -> LINEAR -> SIGMOID. I.e., it has $L-1$ layers using a ReLU activation function followed by an output layer with a sigmoid activation function.
  • Use random initialization for the weight matrices. Use np.random.rand(shape) * 0.01.
  • Use zeros initialization for the biases. Use np.zeros(shape).
  • We will store $n^{[l]}$, the number of units in different layers, in a variable layer_dims. For example, the layer_dims for the "Planar Data classification model" from last week would have been [2,4,1]: There were two inputs, one hidden layer with 4 hidden units, and an output layer with 1 output unit. Thus means W1's shape was (4,2), b1 was (4,1), W2 was (1,4) and b2 was (1,1). Now you will generalize this to $L$ layers!
  • Here is the implementation for $L=1$ (one layer neural network). It should inspire you to implement the general case (L-layer neural network).

if L == 1:
        parameters["W" + str(L)] = np.random.randn(layer_dims[1], layer_dims[0]) * 0.01
        parameters["b" + str(L)] = np.zeros((layer_dims[1], 1))

# GRADED FUNCTION: initialize_parameters_deep
def initialize_parameters_deep(layer_dims):
    """
    Arguments:
    layer_dims -- python array (list) containing the dimensions of each layer in our network
    Returns:
    parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL":
                    Wl -- weight matrix of shape (layer_dims[l], layer_dims[l-1])
                    bl -- bias vector of shape (layer_dims[l], 1)
    """
    np.random.seed(3)
    parameters = {}
    L = len(layer_dims)            # number of layers in the network
    for l in range(1, L):
        ### START CODE HERE ### (≈ 2 lines of code)
        parameters["W" + str(l)] = np.random.randn(layer_dims[l], layer_dims[l-1]) * 0.01
        parameters["b" + str(l)] = np.zeros((layer_dims[l], 1))
        ### END CODE HERE ###
        assert(parameters['W' + str(l)].shape == (layer_dims[l], layer_dims[l-1]))
        assert(parameters['b' + str(l)].shape == (layer_dims[l], 1))
    return parameters

parameters = initialize_parameters_deep([5,4,3])
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))

W1 = [[ 0.01788628  0.0043651   0.00096497 -0.01863493 -0.00277388]
 [-0.00354759 -0.00082741 -0.00627001 -0.00043818 -0.00477218]
 [-0.01313865  0.00884622  0.00881318  0.01709573  0.00050034]
 [-0.00404677 -0.0054536  -0.01546477  0.00982367 -0.01101068]]
b1 = [[ 0.]
 [ 0.]
 [ 0.]
 [ 0.]]
W2 = [[-0.01185047 -0.0020565   0.01486148  0.00236716]
 [-0.01023785 -0.00712993  0.00625245 -0.00160513]
 [-0.00768836 -0.00230031  0.00745056  0.01976111]]
b2 = [[ 0.]
 [ 0.]
 [ 0.]]


Expected output:

<table style="width:80%">

<tr>

<td> W1 </td>

<td>[[ 0.01788628  0.0043651   0.00096497 -0.01863493 -0.00277388]

[-0.00354759 -0.00082741 -0.00627001 -0.00043818 -0.00477218]

[-0.01313865  0.00884622  0.00881318  0.01709573  0.00050034]

[-0.00404677 -0.0054536  -0.01546477  0.00982367 -0.01101068]]</td>

</tr>

<tr>

<td>b1 </td>

<td>[[ 0.]

[ 0.]

[ 0.]

[ 0.]]</td>

</tr>

<tr>

<td>W2 </td>

<td>[[-0.01185047 -0.0020565   0.01486148  0.00236716]

[-0.01023785 -0.00712993  0.00625245 -0.00160513]

[-0.00768836 -0.00230031  0.00745056  0.01976111]]</td>

</tr>

<tr>

<td>b2 </td>

<td>[[ 0.]

[ 0.]

[ 0.]]</td>

</tr>

</table>

相关文章
|
传感器 测试技术 atlas
Landsat系列卫星:Landsat 9 详解和细节(NASA/USGS)
Landsat系列卫星:Landsat 9 详解和细节(NASA/USGS)
4088 0
Landsat系列卫星:Landsat 9 详解和细节(NASA/USGS)
|
SQL 机器学习/深度学习 存储
七大经典技术场景!Apache Flink 在多维领域应用的 40+ 实践案例
随着 Apache Flink 自身的发展,越来越多的企业选择 Apache Flink 应用于自身的业务场景,如底层平台建设、实时数仓、实时推荐、实时分析、实时大屏、风控、数据湖等场景中,解决实时计算的需求。
七大经典技术场景!Apache Flink 在多维领域应用的 40+ 实践案例
|
存储 算法 C++
【Qt应用开发】复刻经典:基于Qt实现Windows风格计算器(加减乘除、删除、归零功能全解析)
在Qt中,"栈"的概念主要体现在两个层面:一是程序设计中的数据结构——栈(Stack),二是用户界面管理中的QStackedWidget控件。下面我将分别简要介绍这两个方面:
383 4
|
缓存 监控 负载均衡
提高服务器CPU使用率
提高服务器CPU使用率
1197 8
IDEA中返回上一步和下一步快捷键失效【Ctrl+Alt+左箭头】
这篇文章提供了解决IntelliJ IDEA中"返回上一步"和"下一步"快捷键失效的方法,通常是因为与其他软件的快捷键发生冲突,解决方法是更改快捷键设置。
|
存储 网络协议 网络架构
使用ensp搭建路由拓扑,并使用BGP协议实现网络互通实操
使用ensp搭建路由拓扑,并使用BGP协议实现网络互通实操
592 0
|
机器学习/深度学习 人工智能 自然语言处理
多任务学习的优势
【5月更文挑战第25天】多任务学习的优势
353 6
|
运维 安全 Android开发
手机与电脑投屏互联方案
手机与电脑投屏互联方案
445 7
|
机器学习/深度学习 人工智能 监控
人工智能在金融风险管理中的应用
人工智能在金融风险管理中的应用已经取得了显著的进展,并在提高风险管理效率和准确性方面发挥了重要作用。通过信用评估、欺诈检测、投资组合管理等应用,人工智能为金融行业带来了新的机遇和挑战。然而,我们也要认识到人工智能在风险管理中可能面临的隐私、解释性和偏差等问题。未来,随着技术的发展,人工智能将在金融领域持续发挥重要作用,为金融行业创造更加安全和稳健的环境。
1228 1
|
机器学习/深度学习 数据可视化 数据挖掘
R语言响应面(RSM)、线性模型lm分析生产过程影响因素可视化
R语言响应面(RSM)、线性模型lm分析生产过程影响因素可视化